强化学习论文中的算法框图

本文综述了两篇研究,探讨了深度强化学习在空中地面协调通信系统中设计轨迹与访问控制,以及在多无人机无线网络中实现三维航迹优化的最新进展。通过案例展示了如何利用多agent Reinforcement Learning解决复杂通信与路径规划问题。
摘要由CSDN通过智能技术生成

在这里插入图片描述
摘自 Ding, R., Xu, Y., Gao, F., & Shen, X.(. (2022). Trajectory Design and Access Control for Air–Ground Coordinated Communications System With Multiagent Deep Reinforcement Learning. IEEE Internet of Things Journal, 9, 5785-5798.

在这里插入图片描述
摘自 Zhang, W., Wang, Q., Liu, X., Liu, Y., & Chen, Y. (2021). Three-Dimension Trajectory Design for Multi-UAV Wireless Network With Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology, 70, 600-612.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值