旋转矩阵 单元所需的线代基础知识

1.什么是线性空间的基?为什么线性空间的基能够生成整个线性空间?

在数学中,特别是线性代数中,一组向量能生成整个线性空间(也称为向量空间)意味着这组向量的任何线性组合都能覆盖空间中的每一个向量。换句话说,如果 B={v1,v2,…,vn}是一个线性空间 V 的基,则对于V中的任意向量 w,存在一组标量 c1,c2,…,cn 使得:

        为了确保一组向量可以生成整个线性空间,需要证明两个主要的点:

  1. 线性无关性:向量集合 B 必须是线性无关的,这意味着不存在非平凡的线性组合(除了所有系数都为零的情况外)能够产生零向量。如果向量集合是线性相关的,那么至少有一个向量可以被其余向量的线性组合表示,从而它不是必要的,这违反了基的定义。

  2. 生成空间:向量集合 B必须能够通过其线性组合生成空间 V 中的每一个向量。这通常意味着集合中向量的数量不能少于空间的维数,并且这些向量必须足够多样化,以覆盖空间的所有方向。

        在有限维空间中,如果一组向量是线性无关的,并且数量等于空间的维数,那么这组向量自动地生成整个空间。这是因为如果向量的数目小于空间的维数,它们就不能生成整个空间;而如果大于维数,由于维度限制,它们必然线性相关。

        在具体应用中,验证一组向量是否生成整个线性空间的一个常见方法是构造这些向量的矩阵,并计算该矩阵的秩。如果矩阵的秩等于空间的维数,那么这组向量生成整个空间。这是因为矩阵的秩给出了由列向量(或行向量)生成的空间的维数。

示例:

        假设我们有一个三维的线性空间 V(比如 R^{3}),我们要验证三个向量是否构成这个空间的基。

        考虑向量集合 B={v1,v2,v3},其中:

        首先,我们可以直观地看出这三个向量是线性无关的,因为每个向量都在不同的坐标轴上,没有一个向量可以由其他两个向量的线性组合得到。

        为了更正式地证明这一点,我们构建一个包含这些向量作为列的矩阵,并检查它的秩:

        矩阵 A 显然是单位矩阵,因此它的秩等于它的阶数,也就是 3。既然 A 的秩等于 R^{3} 的维数,这表明 B 中的向量是线性无关的,并且它们的数量与空间的维数相等。

        因此,我们可以说向量集合 B 构成了 R^{3} 的一个基,因为它们既线性无关又能生成整个空间。

        现在,如果我们想要验证任何一个 R^{3} 中的向量是否可以由 B 中的向量线性组合而成,我们可以使用矩阵 A 来解线性方程组。例如,对于向量 w=[2,3,4]^{T},我们可以找到一组系数 c1,c2,c3 使得:

        解这个方程组,我们会发现 c1=2, c2=3, c3=4,这证实了 w 可以通过 B 中向量的线性组合得到,即:

W=2v_{1}+3v_{2}+4v_{3}

2.外积的计算方法:

        在三维空间中。外积的结果是一个向量,它垂直于原向量所在的平面,并且其模长等于这两个向量所构成的平行四边形的面积。外积的方向遵循右手定则。

        假设你有两个三维向量 a=(a1,a2,a3)和 b=(b1​,b2​,b3​),它们的外积 a×b 可以用行列式的形式来表示和计算:

        这里,i , , 和 k 分别是沿着 x, y, z 轴的标准单位向量。

        根据行列式的定义,上述行列式展开后可以得到外积的各个分量:

        行列式拆分时注意前面的系数要乘(-1)^{i+j}

​​​3.逆矩阵怎么求?

以矩阵A为例:

假设 ad−bc≠0,即矩阵 A 是可逆的。

高斯-约旦消元法

高斯-约旦消元法的目标是将矩阵 A 通过一系列行操作转换成单位矩阵 I,同时对单位矩阵 I 进行同样的行操作,最终单位矩阵 I 将变成 A 的逆矩阵 A^{-1}

步骤如下:

  1. 创建增广矩阵 [A∣I],其中 I 是单位矩阵。

  1. 通过行操作将左边的矩阵 A 转换为单位矩阵 I。
  • 令第一行乘以 1/a,得到新的第一行。

  • 然后用第二行减去第一行乘以 c,得到新的第二行。

  • 令第二行乘以​,得到新的第二行。

  • 最后,从第一行减去第二行乘以 b/a​,得到新的第一行。

此时,左边的矩阵已经变成了单位矩阵 I,右边的矩阵就是 A−1。

 4.更好的理解内积

内积空间的秘密icon-default.png?t=N7T8https://www.bilibili.com/video/BV12m4y1s7cC/?spm_id_from=333.337.search-card.all.click&vd_source=033a75d9cfb0b0df5347cafb8b033109

5.正交矩阵

        一个正交矩阵它的每一个列向量的模长一定为1,且两两列向量之间必垂直。(内积为1)

        下面视频推荐从3:56开始,前面的基础部分(尤其是矩阵乘法部分,自己会算就行,作者将矩阵拆分为列向量了,有疑问的看下面)了解即可,不必深究,后面的矩阵分解也可以不看,下面有更好理解的视频。

线性代数可视化理解:矩阵分解与正交矩阵icon-default.png?t=N7T8https://www.bilibili.com/video/BV1v14y1P7GJ/?spm_id_from=333.337.search-card.all.click&vd_source=033a75d9cfb0b0df5347cafb8b033109

作者的方法:(将下图第二个矩阵拆分为两个列向量,分别进行计算后再拼接)

标准的应该是:

先拆分为\begin{bmatrix} 1 &0 \\0 & 1 \end{bmatrix}\cdot \begin{bmatrix} 1\\3 \end{bmatrix} 以及\begin{bmatrix} 1 &0 \\0 & 1 \end{bmatrix}\cdot \begin{bmatrix} 2\\4 \end{bmatrix}再拼接。

理解:

        将矩阵与向量的乘法看作是矩阵列向量的线性组合,其中向量\overrightarrow{x}的元素作为权重。如果我们将矩阵A写成列向量的形式,那么A\overrightarrow{x}可以写作: 

例子:(类比于向量的内积,A可以看作两个行向量)

        作者直接用数字和A的列向量相乘是因为它是正交矩阵,所以可以简化表达,实际也要按上述方法进行计算最为标准。 

 6.矩阵分解

矩阵分解动画讲解,其实也很简单!icon-default.png?t=N7T8https://www.bilibili.com/video/BV1mm4y1i7ex/?spm_id_from=333.337.search-card.all.click&vd_source=033a75d9cfb0b0df5347cafb8b033109

7.两个有关四元数的推荐视频

(如果你已经开始学习三位刚体运动章节了,可在需要时看完,我的ch3的博客中也有链接,强烈推荐!!可以完美理解四元数) 

四元数的可视化icon-default.png?t=N7T8https://www.bilibili.com/video/BV1SW411y7W1/?spm_id_from=333.337.search-card.all.click&vd_source=033a75d9cfb0b0df5347cafb8b033109四元数和三维转动,可互动的探索式视频icon-default.png?t=N7T8https://www.bilibili.com/video/BV1Lt411U7og/?spm_id_from=autoNext&vd_source=033a75d9cfb0b0df5347cafb8b033109

  • 25
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值