【计算机视觉】结构光——格雷码模式捕获教程2(经典论文)

版权声明:本文为博主原创文章,未经博主允许不得转载。http://blog.csdn.net/kyjl888 https://blog.csdn.net/KYJL888/article/details/74206058

基于结构光投影的运动物体高速实时三维测量方法研究

_刘永久


1 系统概述

采用了一种基于高速视觉的投影和同步图像获取方法,将格雷码结构光编码方法应用于运动物体三维测量中,利用缩短帧间投影与图像获取时间方法减小同步误差。该方法可以突破了标准帧率的限制,实现运动物体的连续三维测量;基于物体运动信息估计方法,提出了一种“运动补偿算法”,利用物体本身的运动速度信息补偿同步误差。该算法可通过物体运动速度信息预测帧间像素位置,实现同步误差补偿,进而获得更加准确的三维形态测量结果;

 

 

1 结构光三维形态测量原理

 

 

图2时域编码结构光原理

2 结构光三维测量算法

在本文中,时域编码结构光三维测量算法实现主要分为六步:投影图像序列获取、图像序列差分二值化、不可测点判断、格雷码二进制转换、空间编码图像生成以及三角变换;其算法简要框图如图3所示。

 

图3 格雷码编码结构光三维测量算法框图

 

 

3 运动物体三维测量的关键问题

在三维测量过程中当物体发生运动时,在时刻t,对于运动物体上的某一点(x2,y2,t),根据传统的结构光编码方法,编码字序列为(x2,y2,t)(x2,y2,t-1)(x2,y2,t-2),物体上的同一位置不再对应获取到的多幅图像中的同一像素坐标;该方法得到的编码值存在编码误差,通常称之为同步误差(规定结构光系统是摄像机与投影仪以同步方式工作)。同步误差使得物体上同一位置对应于获得图像序列中的不同像素坐标,即在图像序列中编码条纹对应的像素位置存在像素偏移。正是由于同步误差的存在,限制了时域编码结构光方法用于运动物体的三维测量。

4 高速结构光三维测量

近年来,国内外已有很多学者对基于高速视觉的三维测量方法进行了深入的研究。基于高速视觉结构光投影方法,Ishii叫等人提出了一种用于一维移动物体三维测量的结构光测量方法;Yang叫等人提出了一种基于高速视觉的投影编码点图像的三维测量方法;Gao等人开发出了基于高速相机和投影仪的实时三维测量系统,基于格雷码编码方法,利用图形处理单元(GPU)加速计算,能够达到上百帧的测量速率,高速视觉司一以通过减少时域编码光投影时间间隔的方法来减少动态场景三维测量的同步误差

 

 

图4 高速视觉结构光测量流程图

5 结构光三维测量同步误差补偿算法

5.1 高速速视觉系统补偿

采用一种基于高速视觉的三维结构光测量系统。该系统通过减少帧间投影时间(相比于标准帧率30帧每秒的系统,1000帧每秒的高速视觉系统投影时间减小了33)的方法来减小单位时间内的像素偏移,实验结果表明,该系统可以在一定程度上减小同步误差;由于结构光编码图像投影需要一定时间(例如,投影8对“正反”8-bit格雷码编码图像需要16毫秒时间);另外,同步误差在被测物体与背景具有较大深度差时表现较为明显。因此,仅仅依靠提高投影仪投影速率无法从根本上进一步减小和消除同步误差。

5.2 运动补偿算法

  尝试利用物体本身的运动信息,补偿由于其运动造成的帧间像素偏移,达到进一步减小和消除同步误差的目的。为了进一步减小和最小化同步误差,提出一种运动补偿的结构光编码方法,通过估计物体的运动速度信息,预测物体上同一点在获取投影图像中的像素位置,进而补偿其帧间像素偏移。由于该算法的思想是利用物体本身运动信息作为主要参数,因此称之为“运动补偿算法”。现有的比较成熟的运动估计算法有光流法运动估计算法、基于模板匹配的运动信息估计、基于质心跟踪的运动信息估计等

 

 

 

图5 运动补偿同步误差算法思想


阅读更多
换一批

没有更多推荐了,返回首页