论文笔记(TransNet)

8.TransENet

1.研究背景:

CNN在模型末端采用上采样层进行放大后就完成了重建,忽略了高维空间的特征提取,从而限制了超分辨性能。

2.存在问题:

现在一般网络都采用后上采样方法完成HR重建,HR图像在上采样层后直接恢复,无需进一步增强特征表达。这种方式不仅增加了训练难度而且限制了重建精度的提高,特别是在有大尺度因子重建要求的情况下。

3.改进思索:

与传统卷积相比,Transformer可以捕获长距离依赖关系,并有效地挖掘高维和低维特征之间的相关性,引入Transformer来利用不同深度的特性,用编码器将多层次的特征嵌入到特征提取部分,用解码器用于融合这些嵌入的编码信息,实现增强上采样层后的高维特征表示。

4.解决方案:

1.特征提取:先利用一个卷积完成初始特征提取,然后使用多个特征提取模块(FEM)从不同尺度提取遥感图像中地面目标的高频细节,FEM中考虑了两个基本组件,包括基本块和剩余块,FEM使用局部跳过连接来降低深度模型的训练难度。

2.特征转换:在低维特征空间中进行特征提取后,利用亚像素层实现低维空间到高维空间的特征转换。

3.多级增强:编码器模块数确定为4个(低维特征嵌入3个,高维特征嵌入1个),解码器模块数确定为3个,编码器的层数设置为8层,解码器的层数设置为1层。通过利用多个编码器对不同层次的特征进行编码,同时使用多个解码器来融合和调整编码的特征。

4.图像重建:用一个卷积层完成超分辨重建。

5.成果对比:

6.特点总结:

1.提出了一种新的遥感图像SR框架TransENet,引入Transformer提升遥感图像SR网络性能。

2.设计了一种基于Transformer的多级增强结构,该结构由多个编码器和解码器组成,可以与大多数基于后上采样框架的SR方法相结合。

3. 提出的模型可以隐式地学习不同标记之间的位置信息,以最小化训练阶段的像素级损失函数,因此不需要添加学习到的位置编码。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值