【温度预测】能量谷算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络温度预测EVO-CNN-BiLSTM-Multihead-Attention【含Matlab源码 3975

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、能量谷算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络温度预测简介

能量谷算法是一种用于优化多头注意力机制的方法,它结合了卷积神经网络(CNN)和长短记忆神经网络(LSTM)。该算法主要用于温度预测任务。

在传统的多头注意力机制中,通过计算注意力权重来对输入序列进行加权求和,以获得对应的上下文表示。然而,传统的注意力机制在处理长序列时可能会面临计算复杂度高和信息丢失的问题。

能量谷算法通过引入卷积神经网络和长短记忆神经网络,解决了传统注意力机制的问题。具体原理如下:
(1)卷积神经网络(CNN):CNN用于提取输入序列的局部特征。它通过卷积层和池化层来捕捉输入序列中的空间相关性。这样可以减少输入序列的长度,从而降低计算复杂度。
(2)长短记忆神经网络(LSTM):LSTM用于捕捉输入序列的时间相关性。它通过门控单元来选择性地记忆和遗忘输入序列中的信息。这样可以保留重要的时间依赖关系,避免信息丢失。
(3)多头注意力机制:在CNN和LSTM的基础上,能量谷算法引入了多头注意力机制。它通过将输入序列分成多个子序列,并为每个子序列分配一个注意力头。每个注意力头都可以独立地学习和关注不同的特征子空间。最后,通过将多个注意力头的输出进行加权求和,得到最终的上下文表示。

⛄二、部分源代码

%% 清除内存、清除屏幕
clc
clear

%% 导入特征数据、当天的风速数据
data = xlsread(‘特征序列及实际值.xlsx’);
Features = data(1:18,:); %% 特征输入 :75天,每天24小时,每小时一个采样点,共计7524=1800小时,18个特征数据
Wind_data = data(19,:); %% 实际值输出:75天,每天24小时,每小时一个采样点,共计75
24=1800小时的风速数据

%% 数据平铺为4-D
LP_Features = double(reshape(Features,18,24,1,75)); %% 特征数据格式为1824175,分别对应18特征24小时,75天
LP_WindData = double(reshape(Wind_data,24,1,1,75)); %% 实际数据格式为24
1175 ,分别对应24小时,75天

%% 格式转换为cell
NumDays = 75; %% 数据总天数为 75天
for i=1:NumDays
FeaturesData{1,i} = LP_Features(:,:,1,i);
end

for i=1:NumDays
RealData{1,i} = LP_WindData(:,:,1,i);
end

%% 划分数据
XTrain = FeaturesData(:,1:73); %% 训练集输入为 1-73 天的特征
YTrain = RealData(:,2:74); %% 训练集输出为 2-74天 的实际值

XTest = cell2mat(FeaturesData(: , 74)); %% 测试集输入第 74 天的特征
Ytest = cell2mat(RealData(: , 75)); %% 测试集输出为第 75天 的实际值
SearchAgents_no=20;%种群数量
Max_iter=30;%迭代次数
lb=0.001;%学习率下限
ub=0.5;%学习率上限
dim=1;
fobj=@(x)fun(x,XTrain,YTrain,XTest,Ytest);
[Leader_score,Leader_pos,Convergence_curve,predict_value]= (SearchAgents_no,Max_iter,lb,ub,dim,fobj);
[RMSE1,YPredicted]=fun(0.1,XTrain,YTrain,XTest,Ytest);
% load(‘data.mat’)
[RMSE1_SSA,YPredicted_SSA]=fun(Leader_pos,XTrain,YTrain,XTest,Ytest);
[mae,mse,rmse,mape,error,errorPercent]=calc_error(Ytest,YPredicted);
figure
plot(Convergence_curve,‘r-’)
xlabel(‘迭代次数’)
ylabel(‘RMSE’)
%% 绘图
figure
plot(Ytest,‘m-*’,‘LineWidth’,2);
hold on
plot(YPredicted,‘g-s’,‘LineWidth’,2);
plot(YPredicted_SSA,‘c-o’,‘LineWidth’,2);
legend(‘真实值’,‘CNN-LSTM-Attention预测值’,‘SSA-CNN-LSTM-Attention预测值’);
xlabel(‘预测样本’);
ylabel(‘预测结果’);
title(‘测试集预测结果对比’)
grid

%% 测试集结果
figure;
plotregression(Ytest,YPredicted_SSA,[‘回归图’]);
figure;
ploterrhist(Ytest-YPredicted_SSA,[‘误差直方图’]);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]王晨阳,段倩倩.基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测[J].物理学报. 2019

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

  • 27
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 使用卷积神经网络-长短记忆网络(bi-lstm)-注意力机制对股票收盘价进行回归预测是一种基于深度学习的方法。该方法主要通过多层卷积神经网络提取输入数据的特征,并使用双向的长短记忆网络来学习数据的时序信息,并通过注意力机制来自动选择对预测结果具有重要贡献的部分。 首先,卷积神经网络可以有效提取输入数据的空间特征,这对于股票收盘价预测来说很关键,因为股票市场的价格变化通常具有一定的空间相关性。通过多层卷积网络的前向传播和反向传播过程,模型可以从原始数据中提取出具有预测意义的低维特征表示。 其次,双向的长短记忆网络可以帮助我们学习到时序信息。在股票市场中,过去一段时间的价格变动通常能够为未来提供一定的指引。LSTM网络在处理时序数据时具有优势,能够自动学习到长期依赖关系。通过双向LSTM网络结构,我们可以同时考虑历史信息和未来信息,更好地捕捉到股票价格的动态变化。 最后,注意力机制被引入用于选择对预测结果贡献最重要的部分。在股票市场中,不同的特征可能对价格的预测具有不同的重要性。通过引入注意力机制,我们可以自动学习到不同时间点或特征在预测中的贡献程度,并将更多的关注点放在对预测结果具有更大影响的部分上。 综上所述,使用卷积神经网络-长短记忆网络(bi-lstm)-注意力机制对股票收盘价进行回归预测是一种较为有效的方法。该方法可以利用卷积网络提取空间特征,LSTM网络学习时序信息,并通过注意力机制选择重要特征,从而提高对股票收盘价的预测准确性。这种方法不仅可以应用于股票市场,还可以扩展到其他时序预测问题中。 ### 回答2: 在对股票收盘价进行回归预测时,可以采用卷积神经网络(Convolutional Neural Network, CNN)结合长短记忆网络(Bidirectional Long Short-Term Memory, bi-LSTM)和注意力机制的方法。 首先,通过卷积神经网络对股票数据进行特征提取。卷积层可以提取出时间序列数据中的局部模式和趋势,并且具有平移不变性,能够保留数据的空间结构信息。卷积层的输出经过池化操作,进一步减少参数数量,并提取出更加重要的特征。 接下来,通过双向LSTM模型对经过卷积特征提取的序列数据进行处理。LSTM模型可以捕捉到序列数据中的长期依赖关系,并能够记忆之前的状态,相比传统的循环神经网络效果更好。通过双向LSTM,可以同时考虑到当前数据点前后的信息,提升模型对时间序列数据的理解能力。 最后,引入注意力机制来加权模型对各个时间步的关注程度。注意力机制可以根据每个时间步的重要性,给予不同的权重。对于股票收盘价的回归预测,模型可以更加关注重要的时间步,提高预测的准确性。 整个模型的训练过程包括特征提取、双向LSTM和注意力机制的训练。在训练过程中,可以采用均方误差(Mean Squared Error, MSE)作为损失函数,通过梯度下降算法进行参数优化。 最后,在进行股票收盘价的预测时,可以将历史数据输入到模型中,根据模型输出的预测结果进行回归预测。通过不断的迭代优化,可以提高模型对股票收盘价的准确预测能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值