联邦学习 | 如何使得模型训练精度不受影响的同时,数据隐私也不泄露呢?

在上一节《联邦学习 | 基于加噪的隐私保护算法》我们讲到了可以使用差分隐私训练算法来保护数据隐私,并且其主要的原理是对敏感数据(模型的权重或更新的梯度)进行加噪来隐藏真实的值。确定加噪的多少也是一个技术活,如果加噪太多,隐私保护效果会很好,但是模型训练可能不收敛;如果加噪太少,隐私保护效果可能不太好。那么有没有办法使得模型训练精度不受影响的同时,数据隐私也不泄露呢?

还真有,那就是这次讲的基于密码学的“安全聚合训练”[1][2]。安全聚合训练的总流程比较复杂,我们接下来从最简单的场景逐步分析。(想直接看完整流程的同学可以跳到第6小节哦!)

参考

  1. Practical Secure Aggregation for Federated Learning on User-Held Data 

    https://arxiv.org/pdf/1611.04482.pdf

  2. Practical Secure Aggregation for Privacy-Preserving Machine Learning 

    https://dl.acm.org/doi/pdf/10.1145/3133956.3133982

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值