tensorflow学习笔记(1)-tensoflow的设计机制

本文是TensorFlow学习笔记的第一部分,主要介绍了TensorFlow如何通过定义运算建图,以及如何通过会话执行这些运算。文章详细阐述了tf.Graph()、tf.Session()及其子类InteractiveSession()的用法,解释了全局与局部变量的区别,以及feed和fetches的概念,帮助读者理解TensorFlow的基本工作原理。
摘要由CSDN通过智能技术生成

tensorflow将整个计算表征为一个图(graph),图的节点(node)是Operation(常常简称为ops),节点之间的边(edge)是张量(tensor),不能理解反了。
用图的方式能很容易根据边的连接关系,发现可以并行执行的节点(运算),也更容易分布式部署。此外它专门的编译器可以根据图来生成执行速度更快地代码。也可以将模型存储下来,再用C++等语言实现。
下面依次介绍

1.定义运算——建图(tf.Graph())

图是确立各个tensor之间的运算关系的,比如建立一个图:

#g = tf.get_default_graph()获得默认的graph
graph = tf.Graph()#自己新建立一个graph
with graph.as_default():
  variable = tf.Variable(42, name='foo')
  initialize = tf.global_variables_initializer()
  assign = variable.assign(13)

但我们不需要写前两行,因为tensorflow会在创建任何运算时都会加到默认的图中

2.开始执行——会话(tf.Session())

图仅仅是静态地定义运算方式,运行是通过建立一个会话(tf.Session())。会话做什么呢?会话会在开始时合理分配机器,内存等资源来做运算。如果设置了


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值