8、TensorFlow教程--- 循环神经网络

本文介绍了如何使用TensorFlow实现循环神经网络。循环神经网络是一种深度学习模型,适用于处理序列数据。文章详细阐述了RNN的训练步骤,并讲解了在TensorFlow中构建RNN进行图像分类的过程,包括定义输入数据、计算结果和评估准确率。
摘要由CSDN通过智能技术生成

循环神经网络是一种深度学习导向的算法,采用顺序方法。在神经网络中,我们总是假设每个输入和输出与所有其他层无关。这种类型的神经网络被称为循环神经网络,因为它们按顺序执行数学计算。

考虑以下步骤来训练循环神经网络 -

步骤1 - 输入数据集中的特定示例。

步骤2 - 网络将采用示例并使用随机初始化的变量进行一些计算。

步骤3 - 然后计算预测结果。

步骤4 - 将生成的实际结果与期望值进行比较,将产生一个误差。

步骤5 - 为了追踪误差,它通过相同的路径传播,其中也调整了变量。

步骤6 - 从步骤1到步骤5重复,直到我们确信已经适当地定义了用于获取输出的变量。

步骤7 - 通过将这些变量应用于获取的新未见输入进行系统预测。

下面描述了表示循环神经网络的示意方法 -

使用TensorFlow实现循环神经网络
在这一部分,我们将学习如何使用TensorFlow实现循环神经网络。

步骤1 - TensorFlow包括用于循环神经网络模块的特定实现的各种库。

#Import necessary modules
from __future__ impor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值