1. 贝叶斯定理解析(以疾病检测为例)
贝叶斯定理是概率论中的一个重要定理,描述了在给定某些观测证据的情况下,更新我们对某个事件发生概率的信念。
贝叶斯定理的数学公式如下:
其中:
-
D:目标事件(患者是否患病)
-
T:观测到的证据(检测结果为阳性)
-
P(D):先验概率,即在没有任何额外信息的情况下,某人患病的概率(如 0.1%)。
-
P(T|D):似然概率,即如果某人确实患病,检测为阳性的概率(如 90%)。
-
P(T):边际概率,即检测为阳性的总体概率,包括健康人和病人(综合所有情况的概率)。
-
P(D|T):后验概率,即在检测结果为阳性的情况下,患者实际患病的概率。
疾病检测案例
假设有一种罕见疾病,其在总体人群中的患病率为 0.1%(即 P(D) = 0.001)。现有一种检测方法:
-
对于真正的病人,检测为阳性的概率为 90%(即 P(T|D) = 0.9)。
-
对于健康的人,该检测方法也会产生 5% 的误检率(即 P(T|¬D) = 0.05)。
计算检测结果为阳性时,患者实际患病的概率:
我们使用全概率公式计算 P(T)(检测结果为阳性的总概率):P(T)=P(T∣D)P(D)+P(T∣¬D)P(¬D)P(T)=P(T∣D)P(D)+P(T∣¬D)P(¬D)
代入数据:
然后,使用贝叶斯定理计算 P(D|T)(检测阳性时,患者患病的概率):
即 1.77%,远低于 90%。
结论:虽然检测结果呈阳性,但真正患病的概率只有 1.77%,因为误检率较高,而疾病本身较罕见。
2. 贝叶斯网络基本结构
贝叶斯网络是一种概率图模型,用于表示变量之间的条件独立性关系。它使用有向无环图(DAG),其中:
-
节点(Nodes):表示随机变量。
-
有向边(Edges):表示因果关系或条件依赖。
-
联合概率:可分解为各节点的条件概率乘积。
联合概率公式
对于一个贝叶斯网络,我们可以用如下公式表示联合概率分布:
这种分解方式减少了计算复杂度,使得概率计算更加高效。
3. 贝叶斯网络的三种基本结构
(1) 链式结构(Chain)
示例:
-
A:考大学 → B:上大学 → C:获得更好工作
-
条件独立性:已知 B 的情况下,A 和 C 独立,即:
-
(2) 分叉结构(Fork)
示例:
-
A:擅长数学
-
B:数学成绩好
-
C:物理成绩好
条件独立性:已知 B 后,A 和 C 条件独立,即:
(3) 汇聚结构(Collider)
示例:
-
A:去华为面试
-
B:是否被录取
-
C:竞争者的表现
条件独立性:A 和 C 本来是独立的,但如果知道了 B,则 A 和 C 变得相关。
-
未知 B 时:
-
-
已知 B 时:
-
注:大家有不明白的可以去听这个up主的讲解,很清晰!感谢up主分享!👉【【因果推断②】贝叶斯网络 | 为什么?|暑假】https://www.bilibili.com/video/BV1n14y1t7wR?vd_source=32205851661d6d64c03532c63993928c