因果推断之贝叶斯网络-C1(原理篇)

1. 贝叶斯定理解析(以疾病检测为例)

贝叶斯定理是概率论中的一个重要定理,描述了在给定某些观测证据的情况下,更新我们对某个事件发生概率的信念。

贝叶斯定理的数学公式如下:

其中:

  • D:目标事件(患者是否患病)

  • T:观测到的证据(检测结果为阳性)

  • P(D):先验概率,即在没有任何额外信息的情况下,某人患病的概率(如 0.1%)。

  • P(T|D):似然概率,即如果某人确实患病,检测为阳性的概率(如 90%)。

  • P(T):边际概率,即检测为阳性的总体概率,包括健康人和病人(综合所有情况的概率)。

  • P(D|T):后验概率,即在检测结果为阳性的情况下,患者实际患病的概率。

疾病检测案例

假设有一种罕见疾病,其在总体人群中的患病率为 0.1%(即 P(D) = 0.001)。现有一种检测方法:

  • 对于真正的病人,检测为阳性的概率为 90%(即 P(T|D) = 0.9)。

  • 对于健康的人,该检测方法也会产生 5% 的误检率(即 P(T|¬D) = 0.05)。

计算检测结果为阳性时,患者实际患病的概率:

我们使用全概率公式计算 P(T)(检测结果为阳性的总概率):P(T)=P(T∣D)P(D)+P(T∣¬D)P(¬D)P(T)=P(T∣D)P(D)+P(T∣¬D)P(¬D)

代入数据:

然后,使用贝叶斯定理计算 P(D|T)(检测阳性时,患者患病的概率):

1.77%,远低于 90%。

结论:虽然检测结果呈阳性,但真正患病的概率只有 1.77%,因为误检率较高,而疾病本身较罕见。


2. 贝叶斯网络基本结构

贝叶斯网络是一种概率图模型,用于表示变量之间的条件独立性关系。它使用有向无环图(DAG),其中:

  • 节点(Nodes):表示随机变量。

  • 有向边(Edges):表示因果关系或条件依赖。

  • 联合概率:可分解为各节点的条件概率乘积。

联合概率公式

对于一个贝叶斯网络,我们可以用如下公式表示联合概率分布:

这种分解方式减少了计算复杂度,使得概率计算更加高效。


3. 贝叶斯网络的三种基本结构

(1) 链式结构(Chain)

示例

  • A:考大学 → B:上大学 → C:获得更好工作

  • 条件独立性:已知 B 的情况下,A 和 C 独立,即:

(2) 分叉结构(Fork)

示例

  • A:擅长数学

  • B:数学成绩好

  • C:物理成绩好

条件独立性:已知 B 后,A 和 C 条件独立,即:

(3) 汇聚结构(Collider)

示例

  • A:去华为面试

  • B:是否被录取

  • C:竞争者的表现

条件独立性:A 和 C 本来是独立的,但如果知道了 B,则 A 和 C 变得相关。

  • 未知 B 时:

  • 已知 B 时:

注:大家有不明白的可以去听这个up主的讲解,很清晰!感谢up主分享!👉【【因果推断②】贝叶斯网络 | 为什么?|暑假】https://www.bilibili.com/video/BV1n14y1t7wR?vd_source=32205851661d6d64c03532c63993928c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值