8.1 Inner Products

本文深入探讨了内积的概念及其在一般线性代数中的应用。通过EXAMPLE6展示了如何从已知内积和非奇异变换构建新的内积,并介绍了极化恒等式和内积矩阵,揭示了内积与矩阵、线性变换之间的内在联系。此外,文章还包含了多项内积性质的证明和练习题,涵盖了从基本性质到更高级的应用,如自旋算符和内积矩阵。
摘要由CSDN通过智能技术生成

内积是一般线性代数都会cover的内容,本节的处理在定义上并没有什么不同,但后面的阐述则非常有高度,其中EXAMPLE6是如何从一个已知的内积和non-singular的变换得到一个新的内积,并且本节还介绍了polarization identities和内积矩阵,将之前的知识和内积串起来,体现出内积和矩阵、线性变换等很多知识是有内在联系的。

Exercises

1.Let V V V be a vector space and (   ∣   ) (\text{ }|\text{ }) (  ) an inner product on V V V.
( a ) Show that ( 0 ∣ β ) = 0 (0|\beta)=0 (0β)=0 for all β ∈ V \beta\in V βV.
( b ) Show that if ( α ∣ β ) = 0 (\alpha|\beta)=0 (αβ)=0 for all β ∈ V \beta\in V βV, then α = 0 \alpha=0 α=0.

Solution:
( a ) We have ( 0 ∣ β ) = ( 0 + 0 ∣ β ) = ( 0 ∣ β ) + ( 0 ∣ β ) (0|\beta)=(0+0|\beta)=(0|\beta)+(0|\beta) (0β)=(0+0β)=(0β)+(0β), thus ( 0 ∣ β ) = 0 (0|\beta)=0 (0β)=0.
( b ) We have ( α ∣ α ) = 0 (\alpha|\alpha)=0 (αα)=0, thus α = 0 \alpha=0 α=0.

2.Let V V V be a vector space over F F F. Show that the sum of two inner products on V V V is an inner product on V V V. Is the difference of two inner products an inner product? Show that a positive multiple of an inner product is an inner product.
Solution: Let (   ∣   ) (\text{ }|\text{ }) (  ) and (   ∣   ) ′ (\text{ }|\text{ })' (  ) be two inner products on V V V, let (   ∣   ) ′ ′ = (   ∣   ) + (   ∣   ) ′ (\text{ }|\text{ })''=(\text{ }|\text{ })+(\text{ }|\text{ })' (  )=(  )+(  ), then condition ( a ) is satisfied as:
( α + β ∣ γ ) ′ ′ = ( α + β ∣ γ ) + ( α + β ∣ γ ) ′ = ( α ∣ γ ) + ( β ∣ γ ) + ( α ∣ γ ) ′ + ( β ∣ γ ) ′ = ( α ∣ γ ) + ( α ∣ γ ) ′ + ( β ∣ γ ) + ( β ∣ γ ) ′ = ( α ∣ γ ) ′ ′ + ( β ∣ γ ) ′ ′ \begin{aligned}(\alpha+\beta|\gamma)''&=(\alpha+\beta|\gamma)+(\alpha+\beta|\gamma)'\\&=(\alpha|\gamma)+(\beta|\gamma)+(\alpha|\gamma)'+(\beta|\gamma)'\\&=(\alpha|\gamma)+(\alpha|\gamma)'+(\beta|\gamma)+(\beta|\gamma)'\\&=(\alpha|\gamma)''+(\beta|\gamma)''\end{aligned} (α+βγ)=(α+βγ)+(α+βγ)=(αγ)+(βγ)+(αγ)+(βγ)=(αγ)+(αγ)+(βγ)+(βγ)=(αγ)+(βγ)
condition ( b ) is satisfied as:
( c α ∣ β ) ′ ′ = ( c α ∣ β ) + ( c α ∣ β ) ′ = c ( α ∣ β ) + c ( α ∣ β ) ′ = c ( α ∣ β ) ′ ′ \begin{aligned}(c\alpha|\beta)''=(c\alpha|\beta)+(c\alpha|\beta)'=c(\alpha|\beta)+c(\alpha|\beta)'=c(\alpha|\beta)''\end{aligned} (cαβ)=(cαβ)+(cαβ)=c(αβ)+c(αβ)=c(αβ)
condition ( c ) is satisfied as:
( β ∣ α ) ′ ′ = ( β ∣ α ) + ( β ∣ α ) ′ = ( α ∣ β ) ‾ + ( α ∣ β ) ′ ‾ = ( α ∣ β ) + ( α ∣ β ) ′ ‾ = ( α ∣ β ) ′ ′ ‾ \begin{aligned}(\beta|\alpha)''=(\beta|\alpha)+(\beta|\alpha)'=\overline{(\alpha|\beta)}+\overline{(\alpha|\beta)'}=\overline{(\alpha|\beta)+(\alpha|\beta)'}=\overline{(\alpha|\beta)''}\end{aligned} (βα)=(βα)+(βα)=(αβ)+(αβ)=(αβ)+(αβ)=(αβ)
condition ( d ) is satisfied as: ( α ∣ α ) ′ ′ = ( α ∣ α ) + ( α ∣ α ) ′ > 0 \begin{aligned}(\alpha|\alpha)''=(\alpha|\alpha)+(\alpha|\alpha)'>0\end{aligned} (αα)=(αα)+(αα)>0 if α ≠ 0 \alpha\neq 0 α=0.
Thus (   ∣   ) ′ ′ (\text{ }|\text{ })'' (  ) is an inner product on V V V.
The difference of two inner products may not be an inner product, since condition (d) may be violated.
If k ∈ F , k > 0 k\in F,k>0 kF,k>0, and (   ∣   ) (\text{ }|\text{ }) (  ) an inner product on V V V, let (   ∣   ) ′ = k (   ∣   ) (\text{ }|\text{ })'=k(\text{ }|\text{ }) (  )=k(  ), then we have
( α + β ∣ γ ) ′ = k ( α + β ∣ γ ) = k [ ( α ∣ γ ) + ( β ∣ γ ) ] = k ( α ∣ γ ) + k ( β ∣ γ ) = ( α ∣ γ ) ′ + ( β ∣ γ ) ′ ( c α ∣ β ) ′ = k ( c α ∣ β ) = k c ( α ∣ β ) = c k ( α ∣ β ) = c ( α ∣ β ) ′ ( β ∣ α ) ′ = k ( β ∣ α ) = k ( α ∣ β ) ‾ = k ( α ∣ β ) ‾ = ( α ∣ β ) ′ ‾ ( α ∣ α ) ′ = k ( α ∣ α ) > 0  if  α ≠ 0 (\alpha+\beta|\gamma)'=k(\alpha+\beta|\gamma)=k[(\alpha|\gamma)+(\beta|\gamma)]=k(\alpha|\gamma)+k(\beta|\gamma)=(\alpha|\gamma)'+(\beta|\gamma)' \\ (c\alpha|\beta)'=k(c\alpha|\beta)=kc(\alpha|\beta)=ck(\alpha|\beta)=c(\alpha|\beta)' \\ (\beta|\alpha)'=k(\beta|\alpha)=k\overline{(\alpha|\beta)}=\overline{k(\alpha|\beta)}=\overline{(\alpha|\beta)'} \\ (\alpha|\alpha)'=k(\alpha|\alpha)>0 \text{ if } \alpha\neq 0 (α+βγ)=k(α+βγ)=k[(αγ)+(βγ)]=k(αγ)+k(βγ)=(αγ)+(βγ)(cαβ)=k(cαβ)=kc(αβ)=ck(αβ)=c(αβ)(βα)=k(βα)=k(αβ)=k(αβ)=(αβ)(αα)=k(αα)>0 if α=0
Thus (   ∣   ) ′ (\text{ }|\text{ })' (  ) is an inner product on V V V.

3.Describe explicitly all inner products on R 1 R^1 R1 and on C 1 C^1 C1.
Solution: If (   ∣   ) (\text{ }|\text{ }) (  ) is an inner product on R 1 R^1 R1, then there is some r ∈ R , r > 0 r\in R,r>0 rR,r>0 such that ( x ∣ y ) = r x y (x|y)=rxy (xy)=rxy, in which r = ( 1 ∣ 1 ) r=(1|1) r=(11).
If (   ∣   ) (\text{ }|\text{ }) (  ) is an inner product on C 1 C^1 C1, then there is some r ∈ R , r > 0 r\in R,r>0 rR,r>0 such that ( x ∣ y ) = y ‾ r x (x|y)=\overline{y}rx (xy)=yrx, in which r = ( 1 ∣ 1 ) r=(1|1) r=(11)

4.Verify that the standard inner product on F n F^n Fn is an inner product.
Solution: We let α = ( x 1 , … , x n ) \alpha=(x_1,\dots,x_n) α=(x1,,xn), β = ( y 1 , … , y n ) \beta=(y_1,\dots,y_n) β=(y1,,yn) and γ = ( z 1 , … , z n ) \gamma=(z_1,\dots,z_n) γ=(z1,,zn), then
( α + β ∣ γ ) = ∑ i = 1 n ( x i + y i ) z i ‾ = ∑ i = 1 n x i z i ‾ + ∑ i = 1 n y i z i ‾ = ( α ∣ γ ) + ( β ∣ γ ) ( c α ∣ β ) = ∑ i = 1 n ( c x i ) y i ‾ = c ∑ i = 1 n x i y i ‾ = c ( α ∣ β ) ( β ∣ α ) = ∑ i = 1 n y i x i ‾ = ∑ i = 1 n x i y i ‾ ‾ = ( α ∣ β ) ‾ ( α ∣ α ) = ∑ i = 1 n x i x i ‾ = ∑ i = 1 n ∣ x i ∣ 2 > 0  if  ( x 1 , … , x n ) ≠ 0 (\alpha+\beta|\gamma)=\sum_{i=1}^n(x_i+y_i)\overline{z_i}=\sum_{i=1}^nx_i\overline{z_i}+\sum_{i=1}^ny_i\overline{z_i}=(\alpha|\gamma)+(\beta|\gamma) \\ (c\alpha|\beta)=\sum_{i=1}^n(cx_i)\overline{y_i}=c\sum_{i=1}^nx_i\overline{y_i}=c(\alpha|\beta) \\ (\beta|\alpha)=\sum_{i=1}^ny_i\overline{x_i}=\overline{\sum\nolimits_{i=1}^nx_i\overline{y_i}}=\overline{(\alpha|\beta)} \\ (\alpha|\alpha)=\sum_{i=1}^nx_i\overline{x_i}=\sum_{i=1}^n|x_i|^2>0 \text{ if } (x_1,\dots,x_n)\neq 0 (α+βγ)=i=1n(xi+yi)zi=i=1nxizi+i=1nyizi=(αγ)+(βγ)(cαβ)=i=1n(cxi)yi=ci=1nxiyi=c(αβ)(βα)=i=1nyixi=i=1nxiyi=(αβ)(αα)=i=1nxixi=i=1nxi2>0 if (x1,,xn)=0

5.Let (   ∣   ) (\text{ }|\text{ }) (  ) be the standard inner product on R 2 R^2 R2.
( a ) Let α = ( 1 , 2 ) , β = ( − 1 , 1 ) \alpha=(1,2),\beta=(-1,1) α=(1,2),β=(1,1). If γ \gamma γ is avector such that ( α ∣ γ ) = − 1 (\alpha|\gamma)=-1 (αγ)=1 and ( β ∣ γ ) = 3 (\beta|\gamma)=3 (βγ)=3, find γ \gamma γ.
( b ) Show that for any α ∈ R 2 \alpha\in R^2 αR2 we have α = ( α ∣ ϵ 1 ) ϵ 1 + ( α ∣ ϵ 2 ) ϵ 2 \alpha=(\alpha|\epsilon_1)\epsilon_1+(\alpha|\epsilon_2)\epsilon_2 α=(αϵ1)ϵ1+(αϵ2)ϵ2.
Solution:
( a ) Let γ = ( x , y ) \gamma=(x,y) γ=(x,y), then we have x + 2 y = − 1 x+2y=-1 x+2y=1 and − x + y = 3 -x+y=3 x+y=3, thus γ = ( − 7 / 3 , 2 / 3 ) \gamma=(-7/3,2/3) γ=(7/3,2/3).
( b ) Let α = ( x , y ) \alpha=(x,y) α=(x,y), then ( α ∣ ϵ 1 ) = x (\alpha|\epsilon_1)=x (αϵ1)=x and ( α ∣ ϵ 2 ) = y (\alpha|\epsilon_2)=y (αϵ2)=y, thus
( α ∣ ϵ 1 ) ϵ 1 + ( α ∣ ϵ 2 ) ϵ 2 = x ( 1 , 0 ) + y ( 0 , 1 ) = ( x , y ) = α (\alpha|\epsilon_1)\epsilon_1+(\alpha|\epsilon_2)\epsilon_2=x(1,0)+y(0,1)=(x,y)=\alpha (αϵ1)ϵ1+(αϵ2)ϵ2=x(1,0)+y(0,1)=(x,y)=α

6.Let (   ∣   ) (\text{ }|\text{ }) (  ) be the standard inner product on R 2 R^2 R2, and let T T T be the linear operator T ( x 1 , x 2 ) = ( − x 2 , x 1 ) T(x_1,x_2)=(-x_2,x_1) T(x1,x2)=(x2,x1). Now T T T is 'rotation through 9 0 ∘ 90^{\circ} 90’ and has the property that ( α ∣ T α ) = 0 (\alpha|T\alpha)=0 (αTα)=0 for all α ∈ R 2 \alpha\in R^2 αR2. Find all inner products [   ∣   ] [\text{ }|\text{ }] [  ] on R 2 R^2 R2 such that [ α ∣ T α ] = 0 [\alpha|T\alpha]=0 [αTα]=0 for each α \alpha α.
Solution: All inner products on R 2 R^2 R2 can be expressed as

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值