PCA主成分分析

在这里插入图片描述
目标:使得所有原始点与投影点之间的误差最小(最小重构误差
以二维空间为例,已知 u ⃗ \vec{u} u 为单位向量,则有:

e ⃗ = x ⃗ − p i j x ⃗ \vec{e}=\vec{x}-p_{ij}\vec{x} e =x pijx = x ⃗ − ( x ⃗ , u ⃗ ) u ⃗ \vec{x}-(\vec{x},\vec{u})\vec{u} x (x ,u )u = x ⃗ − ( x ⃗ T u ⃗ ) u ⃗ \vec{x}-(\vec{x}^T\vec{u})\vec{u} x (x Tu )u

其中 x ⃗ T u ⃗ \vec{x}^T\vec{u} x Tu 为标量。
拓展到多维空间,有

J   = ∣ ∣ e ⃗ ∣ ∣ 2 = [ x ⃗ − ( x ⃗ T u ⃗ ) u ⃗ ] T [ x ⃗ − ( x ⃗ T u ⃗ ) u ⃗ ] = x ⃗ T x ⃗ − ( x ⃗ T u ⃗ ) 2 − ( x ⃗ T u ⃗ ) u ⃗ T x ⃗ + ( x ⃗ T u ⃗ ) 2 u ⃗ T u ⃗ = ∣ ∣ x ⃗ ∣ ∣ 2 − ( x ⃗ T u ⃗ ) 2 J \, = ||\vec{e}||^2 = [\vec{x}-(\vec{x}^T\vec{u})\vec{u}]^T[\vec{x}-(\vec{x}^T\vec{u})\vec{u}]\\\\\quad = \vec{x}^T\vec{x} - (\vec{x}^T\vec{u})^2 - (\vec{x}^T\vec{u})\vec{u}^T\vec{x} + (\vec{x}^T\vec{u})^2\vec{u}^T\vec{u}\\\quad = ||\vec{x}||^2 - (\vec{x}^T\vec{u})^2 J=e 2=[x (x Tu )u ]T[x (x Tu )u ]=x Tx (x Tu )2(x Tu )u Tx +(x Tu )2u Tu =x 2(x Tu )2

因为 x ⃗ \vec{x} x 为已知量,所以 m i n J minJ minJ即为 m a x ( x ⃗ T u ⃗ ) 2 = m a x [ u ⃗ T ( x ⃗ x ⃗ T ) u ⃗ ] max(\vec{x}^T\vec{u})^2=max[\vec{u}^T(\vec{x}\vec{x}^T)\vec{u}] max(x Tu )2=max[u T(x x T)u ](因为 x ⃗ T u ⃗ \vec{x}^T\vec{u} x Tu 为标量)
现假设共有 N N N个样本

m a x ∑ i = 1 N u ⃗ T ( x i ⃗ x i ⃗ T ) u = u ⃗ T ( ∑ i = 1 N x i ⃗ x i ⃗ T ) u max\sum_{i=1}^{N}\vec{u}^T(\vec{x_i}\vec{x_i}^T)u=\vec{u}^T(\sum_{i=1}^{N}\vec{x_i}\vec{x_i}^T)u maxi=1Nu T(xi xi T)u=u T(i=1Nxi xi T)u

X = ∑ i = 1 N x i ⃗ x i ⃗ T X=\sum_{i=1}^{N}\vec{x_i}\vec{x_i}^T X=i=1Nxi xi T,即为 m a x ( u ⃗ T X u )   s t   ∣ ∣ u ⃗ ∣ ∣ = 1 max(\vec{u}^TXu) \ st\ ||\vec{u}||=1 max(u TXu) st u =1

设拉格朗日函数为: L ( u ⃗ , λ ) = u ⃗ T X u + λ ( 1 − u ⃗ T u ⃗ ) L(\vec{u},\lambda)= \vec{u}^TXu+\lambda(1-\vec{u}^T\vec{u}) L(u ,λ)=u TXu+λ(1u Tu )

则有
{ ∂ L ∂ u = X u ⃗ − λ u ⃗ = 0 ∂ L ∂ λ = 1 − u ⃗ T u ⃗ = 0 \begin{cases}\frac{\partial L}{\partial u}=X\vec{u}-\lambda\vec{u}=0\\\\\frac{\partial L}{\partial \lambda}=1-\vec{u}^T\vec{u}=0\end{cases} uL=Xu λu =0λL=1u Tu =0

{ X u ⃗ = λ u ⃗ u ⃗ T u ⃗ = 1 \begin{cases}X\vec{u}=\lambda\vec{u}\\\\\vec{u}^T\vec{u}=1 \end{cases} Xu =λu u Tu =1

λ \lambda λ最大值对应的特征向量即为第一主成分,实质上就是求对称阵的特征值与特征向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值