1. 多传感器融合需求概述
(1)自动驾驶中常用的传感器
- 激光雷达(LiDAR, Light Detection And Ranging)
- 相机(Camera)
- 毫米波雷达(常称为Radar, Radio Detection And Ranging, 实际是millimeter wave Radar)
- 超声波雷达(ultrasonic Radar)
- 全球卫星定位系统(GNSS, Global Navigation Satellite System)和RTK(Real-Time Kinematic)
- 惯性传感器(IMU, Inertial Measurement Unit)
- 轮速计(Wheel Speedometer)
(2)运动感知类传感器(协助分析我们在哪,一般用于解决建图定位问题)
- 全球卫星定位系统(GNSS, Global Navigation Satellite System)和RTK(Real-Time Kinematic):GNSS结合RTK技术,能够做到实现分米、甚至是厘米级别的定位
- 惯性传感器(IMU, Inertial Measurement Unit):可以获取运动过程中的速度、角速度、加速度等信息
- 轮速计(Wheel Speedometer):可以获取转角、横向以及纵向的速度等信息
- 激光雷达(LiDAR, Light Detection And Ranging)
- 相机(Camera)
(3)环境感知类传感器(协助分析我们在路上会遇到什么,一般用于解决感知问题)
-
激光雷达(LiDAR, Light Detection And Ranging)
-
相机(Camera)
-
毫米波雷达(常称为Radar, Radio Detection And Ranging, 实际是millimeter wave Radar)
-
超声波雷达(ultrasonic Radar)
(4)自动驾驶系统的要求
-
能适应不同天气条件:晴天、雨天、雾天、雪天、阴天等
-
能适应不同光照条件:白天、黄昏、黑夜、阳光直射、背光
-
能感知不同距离:盲区(0-2m)、近距离(2-40m)、中距离(40-80m)、远距离(80-200m)、超远距离(200+m)
-
能在多维度上进行高精度检测:六自由度观测(x, y, z, roll, pitch, yaw),速度/加速度/角速度等
-
系统级要求:全程无漏检、无误检、时间误差<10ms、位置误差<30cm
(5)各传感器的优劣
-
Camera:优点是能够提供丰富的颜色细节,适用于目标丰富场景,缺点是缺乏深度信息,对光照条件是必要条件
-
LiDAR:优点是能够提供完整的3D信息,对距离感知能力强。缺点是成本高,量产难度大,对雨水、灰尘敏感
-
Radar:优点是能够全天候工作,速度感知能力强,量产成熟。缺点是对高度和角度的精度较低,对静止障碍物的感知能力弱。
-
结合传感器的优缺点可知,一种传感器无法适配所有场景,需要出色的融合技术才能解决。另外,从传感器的功能来看,建图定位和感知两个方向都需要涉及到多传感器融合问题。
2. 多传感器硬件系统的构建
2.1 感知多传感器分析
(1)光波
光波是一种电磁波,LiDAR、Camera和Radar都是以电磁波为介质进行环境观测,三者的波长依次增大。对于不同波长的电磁波,其特性为:
- 短波:传播方向性好,因此检测精度高,但看不远
- 长波:衍射能力强,因此抗干扰能力强(如雨水、灰尘等的影响较小),看得远
基于长波与短波特性,在自动驾驶中使用多波段配合,互为冗余,可适配各种天气、光照条件、感知距离和精度需要。
问题:为什么不使用红外传感器?
因为红外传感器是基于热成像的,自动驾驶室外场景中存在很多热成像源,相应地噪声会很多,所以开放式环境下很少使用红外传感器。但室内场景下红外传感器使用得较多,比如自动驾驶的智能座舱的DMS成像中会使用红外传感器技术,来感知人的行为和信息。
(2)声波
声波是一种机械波,利用机械振动在介质中的传播来进行感知,如超声波。机械波的特性如下:
- 机械波通过机械振动在介质中传播波形,它的波长较长,相应的衍射能力也较强,因此具有一定的抗干扰能力(透视能力)
- 机械波在介质中传播的距离较短,因此它的感知距离较短,衰减比较快
在自动驾驶中,使用超声波能够强化近距离检测能力,在近距离与电磁波传感器互为冗余。
2.2 传感器成像机制
2.2.1 Camera成像
(1)Camera成像机制
Camera成像利用小孔成像原理,如下图所示,太阳光照射到物体上,这些光会反射到棱镜上,通过焦点到达成像平面上,形成一个倒立的影像。其特点如下:
-
光源来自外部,因此对光照(如黑夜)敏感
-
在成像的过程在会有一个维度的丢失,将一个3D物体在一个2D平面上进行成像,丢失了物体的深度维度
-
成像清晰的约束:通常 f ≤ v ≤ 2 f f \leq v \leq 2f f≤v≤2f , , , 1 f = 1 u + 1 v \frac{1}{f}=\frac{1}{u}+\frac{1}{v} f1=u1+v1$
-
视角由像距和传感器尺寸共同决定:
水平视角 : H F O V = 2 a t a n ( 0.5 w / v ) 垂直视角 : V F O V = 2