VINS-Mono+Fusion源码解析系列(十八):IMU预积分约束

1. 图优化

(1)使用方法

​ 损失函数 F ( x ) F(x) F(x)由残差函数 f ( x ) f(x) f(x)​组成:
min ⁡ x F ( x ) = 1 2 ∣ ∣ f ( x ) ∣ ∣ 2 2 \min_x F(x) = \frac{1}{2}||f(x)||_2^2 xminF(x)=21∣∣f(x)22
​ 当考虑方差时,可以写为:
min ⁡ x F ( x ) = f ( x ) T Ω f ( x ) \min_x F(x) = f(x)^T\Omega f(x) xminF(x)=f(x)TΩf(x)
​ 利用高斯牛顿方法进行优化求解,可得到如下增量方程:
J T Ω J ⏟ Δ x = − J T Ω f ( x ) ⏟ H                         g       \underbrace{J^T\Omega J}\Delta x = \underbrace{-J^T\Omega f(x)} \\ H\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ g \ \ \ \ \ JTΩJΔx= JTΩf(x)H                       g     
(2)优化中使用预积分的步骤

​ 通过上述增量方程可知,需要获取的变量如下:

  • 待优化变量的残差 Δ x \Delta x Δx
  • 残差关于待优化变量的雅可比 J J J
  • 残差的方差 Ω \Omega Ω
  • 在预积分优化中,bias也作为待优化变量参与优化,为避免因bias变化而重新进行预积分,需要在bias处通过泰勒展开进行更新

2. IMU预积分约束

2.1 IMU预积分残差

(1)残差定义

​ 已知姿态更新方法如下:
[ p w b j q w b j v j w b j a b j g ] 15 × 1 = [ p w b i + v i w Δ t − 1 2 g w Δ t 2 + q w b i α b i b j q w b i q b i b j v i w − g w Δ t + q w b i β b i b j b i a b i g ] \left[\begin{array}{cc} p_{wb_j} \\ q_{wb_j} \\ v_j^w \\ b_j^a \\ b_j^g \end{array} \right]_{15\times1} = \left[\begin{array}{cc} p_{wb_i}+v_i^w\Delta{t}-\frac{1}{2}g^w\Delta{t^2}+q_{wb_i}\alpha_{b_ib_j} \\ q_{wb_i}q_{b_ib_j} \\ v_i^w-g^w\Delta{t}+q_{wb_i}\beta_{b_ib_j} \\ b_i^a \\ b_i^g \end{array} \right] pwbjqwbjvjwbjabjg 15×1= pwbi+viwΔt21gwΔt2+qwbiαbibjqwbiqbibjviwgwΔt+qwbiβbibjbiabig
​ 于是,残差可以写为如下形式:
e B ( x i , x j ) = [ r p r q r v r b a r b g ] 15 × 1 = [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j 2 [ q b i b j − 1 ⊗ ( q w b i − 1 ⊗ q w b j ) ] x y z q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j b j a − b i a b j g − b i g ] e_B(x_i,x_j) = \left[\begin{array}{cc} r_p \\ r_q \\ r_v \\ r_{ba} \\ r_{bg} \end{array} \right]_{15\times1} = \left[\begin{array}{cc} q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j} \\ 2[q_{b_ib_j}^{-1}\otimes{(q_{wb_i}^{-1}\otimes{q_{wb_j}})}]_{xyz} \\ q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j} \\ b_j^a-b_i^a \\ b_j^g-b_i^g \end{array} \right] eB(xi,xj)= rprqrvrbarbg 15×1= qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj2[qbibj1(qwbi1qwbj)]xyzqwbi1(vjwviw+gwΔt)βbibjbjabiabjgbig
​ 待优化变量为: [ p w b i q w b i v i w b i a b i g ] \left[\begin{array}{cc} p_{wb_i} & q_{wb_i} & v_i^w & b_i^a & b_i^g \end{array} \right] [pwbiqwbiviwbiabig] [ p w b j q w b j v j w b j a b j g ] \left[\begin{array}{cc} p_{wb_j} & q_{wb_j} & v_j^w & b_j^a & b_j^g \end{array} \right] [pwbjqwbjvjwbjabjg]

​ 在求雅可比时,是利用残差对待优化变量的扰动来求导得到的:
[ δ p w b i δ q w b i δ v i w δ b i a δ b i g ] [ δ p w b j δ q w b j δ v j w δ b j a δ b j g ] \left[\begin{array}{cc} \delta p_{wb_i} & \delta q_{wb_i} & \delta v_i^w & \delta b_i^a & \delta b_i^g \end{array} \right] \\ \left[\begin{array}{cc} \delta p_{wb_j} & \delta q_{wb_j} & \delta v_j^w & \delta b_j^a & \delta b_j^g \end{array} \right] [δpwbiδqwbiδviwδbiaδbig][δpwbjδqwbjδvjwδbjaδbjg]

(2)代码实现

​ 主要是计算IMU中位姿,速度以及零偏的相邻时刻的残差,在计算时需要考虑零偏变化对IMU预积分的影响,因此需要先更新IMU预积分(在零偏处进行一阶泰勒展开)

// 计算和给定相邻帧状态量的残差
    Eigen::Matrix<double, 15, 1> evaluate(const Eigen::Vector3d &Pi, 
                                          const Eigen::Quaterniond &Qi, 
                                          const Eigen::Vector3d &Vi, 
                                          const Eigen::Vector3d &Bai, 
                                          const Eigen::Vector3d &Bgi,
                                          const Eigen::Vector3d &Pj, 
                                          const Eigen::Quaterniond &Qj, 
                                          const Eigen::Vector3d &Vj, 
                                          const Eigen::Vector3d &Baj, 
                                          const Eigen::Vector3d &Bgj)
    {
        Eigen::Matrix<double, 15, 1> residuals;  // 定义15维的残差项
        // 下面的雅可比在预积分过程中已求解出
        // 位移预积分在加速度零偏ba处的导数(一阶雅可比)
        Eigen::Matrix3d dp_dba = jacobian.block<3, 3>(O_P, O_BA);
        // 位移预积分在陀螺仪零偏bg处的导数(一阶雅可比)
        Eigen::Matrix3d dp_dbg = jacobian.block<3, 3>(O_P, O_BG);
		// 姿态预积分在加速度零偏ba处的导数(一阶雅可比)
        Eigen::Matrix3d dq_dbg = jacobian.block<3, 3>(O_R, O_BG);
		// 速度预积分在加速度零偏ba处的导数(一阶雅可比)
        Eigen::Matrix3d dv_dba = jacobian.block<3, 3>(O_V, O_BA); 
        // 速度预积分在陀螺仪零偏bg处的导数(一阶雅可比)
        Eigen::Matrix3d dv_dbg = jacobian.block<3, 3>(O_V, O_BG);  

        Eigen::Vector3d dba = Bai - linearized_ba;  // 加速度零偏ba变化量
        Eigen::Vector3d dbg = Bgi - linearized_bg;  // 角速度零偏bg变化量

/*
   delta_q, delta_v, delta_p为原先的预积分量
   corrected_delta_q, corrected_delta_v, corrected_delta_p为考虑相应零偏变化的预积分量
   因为零偏也是待优化变量,为了避免因零偏变化导致重新进行预积分,对原先预积分量在相应零偏处进行一阶泰勒展开
   对姿态预积分量在零偏处(dbg)进行一阶泰勒展开(对应的雅可比为dp_dbg), 得到考虑零偏变化的新的姿态预积分量
*/
        Eigen::Quaterniond corrected_delta_q = delta_q * Utility::deltaQ(dq_dbg * dbg);
        // 对速度预积分量在零偏处(dba和dbg)进行一阶泰勒展开(对应的雅可比分别为dp_dba和dp_dbg), 得到考虑零偏变化的新的速度预积分量
        Eigen::Vector3d corrected_delta_v = delta_v + dv_dba * dba + dv_dbg * dbg;
        // 对平移预积分量在零偏处(dba和dbg)进行一阶泰勒展开(对应的雅可比分别为dp_dba和dp_dbg), 得到考虑零偏变化的新的平移预积分量
        Eigen::Vector3d corrected_delta_p = delta_p + dp_dba * dba + dp_dbg * dbg;

/*
   Qi:q_{b_i}^w   Qi:q_{b_j}^w   G: g^w  sum_dt:delta_t   
   Pj:p_{b_j}^w   Pi:p_{b_i}^w   Vi:v_{b_i}^w   Vj:v_{b_j}^w   
   corrected_delta_p:alpha_{b_j}^{b_i}   corrected_delta_q: q_{b_j}^{b_i}   
   corrected_delta_v: beta_{b_j}^{b_i}
*/
        // 位置残差项
        residuals.block<3, 1>(O_P, 0) = Qi.inverse() * (0.5 * G * sum_dt * sum_dt + Pj - Pi - Vi * sum_dt) - corrected_delta_p;
        // 姿态残差项
        residuals.block<3, 1>(O_R, 0) = 2 * (corrected_delta_q.inverse() * (Qi.inverse() * Qj)).vec();  // vec(): 取四元数的虚部
        // 速度残差项
        residuals.block<3, 1>(O_V, 0) = Qi.inverse() * (G * sum_dt + Vj - Vi) - corrected_delta_v;
        // 零偏残差项  直接相减
        residuals.block<3, 1>(O_BA, 0) = Baj - Bai;
        residuals.block<3, 1>(O_BG, 0) = Bgj - Bgi;
        return residuals;
    }

2.2 IMU残差对待优化变量的雅可比

2.2.1 残差对i时刻各状态量的雅可比

(1)位移残差在 i i i时刻对各状态量的雅可比

  • i i i时刻位移残差 r p r_p rp对位移的雅可比

∂ r p ∂ δ p i p i , = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ p i p i , = ∂ q w b i − 1 ( − p w b i ) ∂ δ p i p i , = − q w b i − 1 \frac{\partial r_p}{\partial \delta p_ip_i^,} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta p_ip_i^,} = \frac{\partial q_{wb_i}^{-1}(-p_{wb_i})}{\partial \delta p_ip_i^,} = -q_{wb_i}^{-1} δpipi,rp=δpipi,[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]=δpipi,qwbi1(pwbi)=qwbi1

  • i i i时刻位移 r p r_p rp对姿态的雅可比
    在这里插入图片描述
  • i i i时刻位移 r p r_p rp对速度的雅可比

∂ r p ∂ δ v i w = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ v i w = ∂ q w b i − 1 ( − v i w Δ t ) ∂ δ v i w = − q w b i − 1 Δ t \frac{\partial r_p}{\partial \delta v_i^w} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta v_i^w} = \frac{\partial q_{wb_i}^{-1}(-v_i^w \Delta t)}{\partial \delta v_i^w} = -q_{wb_i}^{-1}\Delta t δviwrp=δviw[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]=δviwqwbi1(viwΔt)=qwbi1Δt

  • i i i时刻位移 r p r_p rp对加速度计偏置的雅可比

∂ r p ∂ δ b i a = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ b i a                = ∂ ( − α b i b j ) ∂ δ b i a = ∂ ( − α b i b j − J b a α δ b a − J b g α δ b g ) ∂ δ b i a = − J b a α \frac{\partial r_p}{\partial \delta b_i^a} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta b_i^a} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \frac{\partial (-\alpha_{b_ib_j})}{\partial \delta b_i^a} = \frac{\partial (-\alpha_{b_ib_j} - J_{b_a}^{\alpha}\delta b_a - J_{b_g}^{\alpha}\delta b_g)}{\partial \delta b_i^a} = - J_{b_a}^{\alpha} δbiarp=δbia[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]              =δbia(αbibj)=δbia(αbibjJbaαδbaJbgαδbg)=Jbaα

  • i i i时刻位移$ r p r_p rp对陀螺仪偏置的雅可比

∂ r p ∂ δ b i g = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ b i g                = ∂ ( − α b i b j ) ∂ δ b i g = ∂ ( − α b i b j − J b a α δ b a − J b g α δ b g ) ∂ δ b i g = − J b g α \frac{\partial r_p}{\partial \delta b_i^g} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta b_i^g} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \frac{\partial (-\alpha_{b_ib_j})}{\partial \delta b_i^g} = \frac{\partial (-\alpha_{b_ib_j} - J_{b_a}^{\alpha}\delta b_a - J_{b_g}^{\alpha}\delta b_g)}{\partial \delta b_i^g} = - J_{b_g}^{\alpha} δbigrp=δbig[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]              =δbig(αbibj)=δbig(αbibjJbaαδbaJbgαδbg)=Jbgα

(2)姿态残差在 i i i时刻对各状态量的雅可比

  • i i i时刻姿态残差 r q r_q rq对位移的雅可比

∂ r q ∂ δ p i p i , = ∂ 2 [ q b i b j − 1 ⊗ ( q w b i − 1 ⊗ q w b j ) ] x y z ∂ δ p i p i , = 0 \frac{\partial r_q}{\partial \delta p_ip_i^,} = \frac{\partial 2[q_{b_ib_j}^{-1}\otimes{(q_{wb_i}^{-1}\otimes{q_{wb_j}})}]_{xyz}}{\partial \delta p_ip_i^,} = 0 δpipi,rq=δpipi,2[qbibj1(qwbi1qwbj)]xyz=0

  • i i i时刻姿态残差 r q r_q rq对姿态的雅可比
    在这里插入图片描述
  • i i i时刻姿态残差 r q r_q rq对速度的雅可比

∂ r q ∂ δ v i w = ∂ 2 [ q b i b j − 1 ⊗ ( q w b i − 1 ⊗ q w b j ) ] x y z ∂ δ v i w = 0 \frac{\partial r_q}{\partial \delta v_i^w } = \frac{\partial 2[q_{b_ib_j}^{-1} \otimes (q_w{b_i}^{-1} \otimes q_{wb_j})]_{xyz}}{\partial \delta v_i^w } = 0 δviwrq=δviw2[qbibj1(qwbi1qwbj)]xyz=0

  • i i i时刻姿态残差 r q r_q rq对加速度计偏置的雅可比

∂ r q ∂ δ b i a = ∂ 2 [ q b i b j − 1 ⊗ ( q w b i − 1 ⊗ q w b j ) ] x y z ∂ δ b i a = 0 \frac{\partial r_q}{\partial \delta b_i^a } = \frac{\partial 2[q_{b_ib_j}^{-1} \otimes (q_{wb_i}^{-1} \otimes q_{wb_j})]_{xyz}}{\partial \delta b_i^a } = 0 δbiarq=δbia2[qbibj1(qwbi1qwbj)]xyz=0

  • i i i时刻姿态残差 r q r_q rq对陀螺仪偏置的雅可比
    在这里插入图片描述(3)速度残差在 i i i时刻对各状态量的雅可比

  • i i i时刻速度残差 r v r_v rv对位移的雅可比

∂ r v ∂ δ p b i b i , = ∂   q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j ∂ δ p b i b i , = 0 \frac{\partial r_v}{\partial \delta p_{b_ib_i^,}} = \frac{\partial \ q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j}}{\partial \delta p_{b_ib_i^,}} = 0 δpbibi,rv=δpbibi, qwbi1(vjwviw+gwΔt)βbibj=0

  • i i i时刻速度残差 r v r_v rv对姿态的雅可比
    在这里插入图片描述
  • i i i时刻速度残差 r v r_v rv对速度的雅可比

∂ r v ∂ δ v i w = ∂ [ q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j ] ∂ δ v i w = − q w b i − 1 \frac{\partial r_v}{\partial \delta v_i^w} = \frac{\partial [q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j}]}{\partial \delta v_i^w} = -q_{wb_i}^{-1} δviwrv=δviw[qwbi1(vjwviw+gwΔt)βbibj]=qwbi1

  • i i i时刻速度残差 r v r_v rv对加速度计偏置的雅可比

∂ r v ∂ δ b i a = ∂ [ q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j ] ∂ δ b i a = ∂ ( − β b i b j ) ∂ δ b i a = ∂ ( − β b i b j − J b a β δ b a − J b g β δ b g ) ∂ δ b i a = − J b a β \frac{\partial r_v}{\partial \delta b_i^a} = \frac{\partial [q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j}]}{\partial \delta b_i^a} \\ = \frac{\partial (-\beta_{b_ib_j})}{\partial \delta b_i^a} = \frac{\partial (-\beta_{b_ib_j} - J_{b_a}^{\beta}\delta b_a - J_{b_g}^{\beta}\delta b_g)}{\partial \delta b_i^a} = - J_{b_a}^{\beta} δbiarv=δbia[qwbi1(vjwviw+gwΔt)βbibj]=δbia(βbibj)=δbia(βbibjJbaβδbaJbgβδbg)=Jbaβ

  • i i i时刻速度残差 r v r_v rv对陀螺仪偏置的雅可比
    在这里插入图片描述
    (4)加速度计偏置残差在 i i i时刻对各状态量的雅可比

  • i i i时刻加速度计偏置残差 r b a r_{b_a} rba对位移的雅可比

∂   r b a ∂ δ p i p i , = ∂ ( b j a − b i a ) ∂ ∂ δ p i p i , = 0 \frac{\partial \ r_{b_a}}{\partial \delta p_ip_i^,} = \frac{\partial (b_j^a - b_i^a)}{\partial \partial \delta p_ip_i^,} = 0 δpipi, rba=∂∂δpipi,(bjabia)=0

  • i i i时刻加速度计偏置残差 r b a r_{b_a} rba对姿态的雅可比

∂   r b a ∂ δ θ b i b i , = ∂ ( b j a − b i a ) ∂ δ θ b i b i , = 0 \frac{\partial \ r_{b_a}}{\partial \delta \theta_{b_ib_i^,}} = \frac{\partial (b_j^a - b_i^a)}{\partial \delta \theta_{b_ib_i^,}} = 0 δθbibi, rba=δθbibi,(bjabia)=0

  • i i i时刻加速度计偏置残差 r b a r_{b_a} rba对速度的雅可比

∂   r b a ∂ δ v i w = ∂ ( b j a − b i a ) ∂ δ v i w = 0 \frac{\partial \ r_{b_a}}{\partial \delta v_i^w} = \frac{\partial (b_j^a - b_i^a)}{\partial \delta v_i^w} = 0 δviw rba=δviw(bjabia)=0

  • i i i时刻加速度计偏置残差 r b a r_{b_a} rba对加速度计偏置的雅可比

∂   r b a ∂ δ b i a = ∂ ( b j a − b i a ) ∂ δ b i a = − I \frac{\partial \ r_{b_a}}{\partial \delta b_i^a} = \frac{\partial (b_j^a - b_i^a)}{\partial \delta b_i^a} = -I δbia rba=δbia(bjabia)=I

  • i i i时刻加速度计偏置残差 r b a r_{b_a} rba对陀螺仪偏置的雅可比

∂   r b a ∂ δ b i g = ∂ ( b j a − b i a ) ∂ δ b i g = 0 \frac{\partial \ r_{b_a}}{\partial \delta b_i^g} = \frac{\partial (b_j^a - b_i^a)}{\partial \delta b_i^g} = 0 δbig rba=δbig(bjabia)=0

(5)陀螺仪偏置残差在 i i i时刻对各状态量的雅可比

  • i i i时刻陀螺仪偏置残差 r b g r_{b_g} rbg对位移的雅可比

∂   r b g ∂ δ p i p i , = ∂ ( b j g − b i g ) ∂ δ p i p i , = 0 \frac{\partial \ r_{b_g}}{\partial \delta p_ip_i^,} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta p_ip_i^,} = 0 δpipi, rbg=δpipi,(bjgbig)=0

  • i i i时刻陀螺仪偏置残差 r b g r_{b_g} rbg对姿态的雅可比

∂   r b g ∂ δ θ b i b i , = ∂ ( b j g − b i g ) ∂ δ θ b i b i , = 0 \frac{\partial \ r_{b_g}}{\partial \delta \theta_{b_ib_i^,}} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta \theta_{b_ib_i^,}} = 0 δθbibi, rbg=δθbibi,(bjgbig)=0

  • i i i时刻陀螺仪偏置残差 r b g r_{b_g} rbg对速度的雅可比

∂   r b g ∂ δ v i w = ∂ ( b j g − b i g ) ∂ δ v i w = 0 \frac{\partial \ r_{b_g}}{\partial \delta v_i^w} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta v_i^w} = 0 δviw rbg=δviw(bjgbig)=0

  • i i i时刻陀螺仪偏置残差 r b g r_{b_g} rbg对加速度计偏置的雅可比

∂   r b g ∂ δ b i a = ∂ ( b j g − b i g ) ∂ δ b i a = 0 \frac{\partial \ r_{b_g}}{\partial \delta b_i^a} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta b_i^a} = 0 δbia rbg=δbia(bjgbig)=0

  • i i i时刻陀螺仪偏置残差 r b g r_{b_g} rbg对陀螺仪偏置的雅可比

∂   r b g ∂ δ b i g = ∂ ( b j g − b i g ) ∂ δ b i g = − I \frac{\partial \ r_{b_g}}{\partial \delta b_i^g} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta b_i^g} = -I δbig rbg=δbig(bjgbig)=I

2.2.2 残差对j时刻各状态量的雅可比

(1)位移残差在 j j j时刻对各状态量的雅可比

  • j j j时刻位移残差 r p r_p rp对位移的雅可比

∂ r p ∂ δ p j p j , = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ p j p j , = ∂ q w b i − 1 ( p w b j ) ∂ δ p j p j , = q w b i − 1 \frac{\partial r_p}{\partial \delta p_jp_j^,} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta p_jp_j^,} = \frac{\partial q_{wb_i}^{-1}(p_{wb_j})}{\partial \delta p_jp_j^,} = q_{wb_i}^{-1} δpjpj,rp=δpjpj,[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]=δpjpj,qwbi1(pwbj)=qwbi1

  • j j j时刻位移残差 r p r_p rp对姿态的雅可比

∂ r p ∂ δ θ b j b j , = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ θ b j b j , = 0 \frac{\partial r_p}{\partial \delta \theta_{b_jb_j^,}} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta \theta_{b_jb_j^,}} = 0 δθbjbj,rp=δθbjbj,[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]=0

  • j j j时刻位移残差 r p r_p rp对速度的雅可比

∂ r p ∂ δ v j w = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ v j w = 0 \frac{\partial r_p}{\partial \delta v_j^w} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta v_j^w} = 0 δvjwrp=δvjw[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]=0

  • j j j时刻位移残差 r p r_p rp对加速度计偏置的雅可比

∂ r p ∂ δ b i a = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ b i a = 0 \frac{\partial r_p}{\partial \delta b_i^a} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta b_i^a} = 0 δbiarp=δbia[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]=0

  • j j j时刻位移残差 r p r_p rp对陀螺仪偏置的雅可比

∂ r p ∂ δ b i g = ∂ [ q w b i − 1 ( p w b j − p w b i − v i w Δ t + 1 2 g w Δ t 2 ) − α b i b j ] ∂ δ b i g = 0 \frac{\partial r_p}{\partial \delta b_i^g} = \frac{\partial [q_{wb_i}^{-1}(p_{wb_j} - p_{wb_i}-v_i^w\Delta{t}+\frac{1}{2}g^w\Delta{t^2})-\alpha_{b_ib_j}]}{\partial \delta b_i^g} = 0 δbigrp=δbig[qwbi1(pwbjpwbiviwΔt+21gwΔt2)αbibj]=0

(2)姿态残差在 j j j时刻对各状态量的雅可比

  • j j j时刻姿态残差 r q r_q rq对位移的雅可比

∂ r q ∂ δ p j p j , = ∂   2 [ q b i b j − 1 ⊗ q w b i − 1 ⊗ q w b j ⊗ [ 1 1 2 δ θ b j b j , ] ] x y z ∂ δ p j p j , = 0 \frac{\partial r_q}{\partial \delta p_jp_j^,} = \frac{\partial \ 2[q_{b_ib_j}^{-1} \otimes q_{wb_i}^{-1} \otimes q_{wb_j} \otimes \left[\begin{array}{cc} 1 \\ \frac{1}{2}\delta \theta_{b_jb_j^,} \end{array} \right]]_{xyz}}{\partial \delta p_jp_j^,} = 0 δpjpj,rq=δpjpj, 2[qbibj1qwbi1qwbj[121δθbjbj,]]xyz=0

  • j j j时刻姿态残差 r q r_q rq对姿态的雅可比

∂ r q ∂ δ θ b j b j , = ∂ 2 [ q b i b j − 1 ⊗ q w b i − 1 ⊗ q w b j ⊗ [ 1 1 2 δ θ b j b j , ] ] x y z ∂ δ θ b i b i , = ∂ 2 [ [ q b i b j − 1 ⊗ q w b i − 1 ⊗ q w b j ] L [ 1 1 2 δ θ b j b j , ] ] x y z ∂ δ θ b i b i , = 2 [ 0 I ] [ q b i b j − 1 ⊗ q w b i − 1 ⊗ q w b j ] L [ 0 1 2 I ] \frac{\partial r_q}{\partial \delta \theta_{b_jb_j^,}} = \frac{\partial 2[q_{b_ib_j}^{-1} \otimes q_{wb_i}^{-1} \otimes q_{wb_j} \otimes \left[\begin{array}{cc} 1 \\ \frac{1}{2}\delta \theta_{b_jb_j^,} \end{array} \right]]_{xyz}}{\partial \delta \theta_{b_ib_i^,}} = \frac{\partial 2[[q_{b_ib_j}^{-1} \otimes q_{wb_i}^{-1} \otimes q_{wb_j}]_L \left[\begin{array}{cc} 1 \\ \frac{1}{2}\delta \theta_{b_jb_j^,} \end{array} \right]]_{xyz}}{\partial \delta \theta_{b_ib_i^,}} \\ = 2 \left[\begin{array}{cc} 0 & I \end{array} \right] [q_{b_ib_j}^{-1} \otimes q_{wb_i}^{-1} \otimes q_{wb_j}]_L \left[\begin{array}{cc} 0 \\ \frac{1}{2}I \end{array} \right] δθbjbj,rq=δθbibi,2[qbibj1qwbi1qwbj[121δθbjbj,]]xyz=δθbibi,2[[qbibj1qwbi1qwbj]L[121δθbjbj,]]xyz=2[0I][qbibj1qwbi1qwbj]L[021I]

  • j j j时刻姿态残差 r q r_q rq对速度的雅可比

∂ r q ∂ δ v j w = ∂   2 [ q b i b j − 1 ⊗ q w b i − 1 ⊗ q w b j ⊗ [ 1 1 2 δ θ b j b j , ] ] x y z ∂ δ v j w = 0 \frac{\partial r_q}{\partial \delta v_j^w} = \frac{\partial \ 2[q_{b_ib_j}^{-1} \otimes q_{wb_i}^{-1} \otimes q_{wb_j} \otimes \left[\begin{array}{cc} 1 \\ \frac{1}{2}\delta \theta_{b_jb_j^,} \end{array} \right]]_{xyz}}{\partial \delta v_j^w} = 0 δvjwrq=δvjw 2[qbibj1qwbi1qwbj[121δθbjbj,]]xyz=0

  • j j j时刻姿态残差 r q r_q rq对加速度计偏置的雅可比

∂ r q ∂ δ b j a = ∂   2 [ q b i b j − 1 ⊗ q w b i − 1 ⊗ q w b j ⊗ [ 1 1 2 δ θ b j b j , ] ] x y z ∂ δ b j a = 0 \frac{\partial r_q}{\partial \delta b_j^a} = \frac{\partial \ 2[q_{b_ib_j}^{-1} \otimes q_{wb_i}^{-1} \otimes q_{wb_j} \otimes \left[\begin{array}{cc} 1 \\ \frac{1}{2}\delta \theta_{b_jb_j^,} \end{array} \right]]_{xyz}}{\partial \delta b_j^a} = 0 δbjarq=δbja 2[qbibj1qwbi1qwbj[121δθbjbj,]]xyz=0

  • j j j时刻姿态残差 r q r_q rq对陀螺仪偏置的雅可比

∂ r q ∂ δ b j g = ∂   2 [ q b i b j − 1 ⊗ q w b i − 1 ⊗ q w b j ⊗ [ 1 1 2 δ θ b j b j , ] ] x y z ∂ δ b j g = 0 \frac{\partial r_q}{\partial \delta b_j^g} = \frac{\partial \ 2[q_{b_ib_j}^{-1} \otimes q_{wb_i}^{-1} \otimes q_{wb_j} \otimes \left[\begin{array}{cc} 1 \\ \frac{1}{2}\delta \theta_{b_jb_j^,} \end{array} \right]]_{xyz}}{\partial \delta b_j^g} = 0 δbjgrq=δbjg 2[qbibj1qwbi1qwbj[121δθbjbj,]]xyz=0

(3)速度残差在 j j j时刻对各状态量的雅可比

  • j j j时刻速度残差 r v r_v rv$对位移的雅可比

∂ r v ∂ δ p j p j , = ∂   q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j ∂ δ p j p j , = 0 \frac{\partial r_v}{\partial \delta p_jp_j^,} = \frac{\partial \ q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j}}{\partial \delta p_jp_j^,} = 0 δpjpj,rv=δpjpj, qwbi1(vjwviw+gwΔt)βbibj=0

  • j j j时刻速度残差 r v r_v rv对姿态的雅可比

∂ r v ∂ δ θ b j b j , = ∂   q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j ∂ δ θ b j b j , = 0 \frac{\partial r_v}{\partial \delta \theta_{b_jb_j^,}} = \frac{\partial \ q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j}}{\partial \delta \theta_{b_jb_j^,}} = 0 δθbjbj,rv=δθbjbj, qwbi1(vjwviw+gwΔt)βbibj=0

  • j j j时刻速度残差 r v r_v rv对速度的雅可比

∂ r v ∂ δ v j w = ∂   q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j ∂ δ v j w = q w b i − 1 \frac{\partial r_v}{\partial \delta v_j^w} = \frac{\partial \ q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j}}{\partial \delta v_j^w} = q_{wb_i}^{-1} δvjwrv=δvjw qwbi1(vjwviw+gwΔt)βbibj=qwbi1

  • j j j时刻速度残差 r v r_v rv对加速度计偏置的雅可比

∂ r v ∂ δ b j a = ∂   q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j ∂ δ b j a = 0 \frac{\partial r_v}{\partial \delta b_j^a} = \frac{\partial \ q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j}}{\partial \delta b_j^a} = 0 δbjarv=δbja qwbi1(vjwviw+gwΔt)βbibj=0

  • j j j时刻速度残差 r v r_v rv对陀螺仪偏置的雅可比

∂ r v ∂ δ b j g = ∂   q w b i − 1 ( v j w − v i w + g w Δ t ) − β b i b j ∂ δ b j g = 0 \frac{\partial r_v}{\partial \delta b_j^g} = \frac{\partial \ q_{wb_i}^{-1}(v_j^w - v_i^w+g^w\Delta{t})-\beta_{b_ib_j}}{\partial \delta b_j^g} = 0 δbjgrv=δbjg qwbi1(vjwviw+gwΔt)βbibj=0

(4)加速度计偏置残差在 j j j时刻对各状态量的雅可比

  • j j j时刻加速度计偏置残差 r b a r_{b_a} rba对位移的雅可比

∂   r b a ∂ δ p j p j , = ∂ ( b j a − b i a ) ∂ δ p j p j , = 0 \frac{\partial \ r_{b_a}}{\partial \delta p_jp_j^,} = \frac{\partial (b_j^a - b_i^a)}{\partial\delta p_jp_j^,} = 0 δpjpj, rba=δpjpj,(bjabia)=0

  • j j j时刻加速度计偏置残差 r b a r_{b_a} rba对姿态的雅可比

∂   r b a ∂ δ θ b j b j , = ∂ ( b j a − b i a ) ∂ δ θ b j b j , = 0 \frac{\partial \ r_{b_a}}{\partial \delta \theta_{b_jb_j^,}} = \frac{\partial (b_j^a - b_i^a)}{\partial \delta \theta_{b_jb_j^,}} = 0 δθbjbj, rba=δθbjbj,(bjabia)=0

  • j j j时刻加速度计偏置残差 r b a r_{b_a} rba对速度的雅可比

∂   r b a ∂ δ v j w = ∂ ( b j a − b i a ) ∂ δ v j w = 0 \frac{\partial \ r_{b_a}}{\partial \delta v_j^w} = \frac{\partial (b_j^a - b_i^a)}{\partial \delta v_j^w} = 0 δvjw rba=δvjw(bjabia)=0

  • j j j时刻加速度计偏置残差 r b a r_{b_a} rba对加速度计偏置的雅可比

∂   r b a ∂ δ b j a = ∂ ( b j a − b i a ) ∂ δ b j a = I \frac{\partial \ r_{b_a}}{\partial \delta b_j^a} = \frac{\partial (b_j^a - b_i^a)}{\partial \delta b_j^a} = I δbja rba=δbja(bjabia)=I

  • j j j时刻加速度计偏置残差 r b a r_{b_a} rba对陀螺仪偏置的雅可比

∂   r b a ∂ δ b j g = ∂ ( b j a − b i a ) ∂ δ b j g = 0 \frac{\partial \ r_{b_a}}{\partial \delta b_j^g} = \frac{\partial (b_j^a - b_i^a)}{\partial \delta b_j^g} = 0 δbjg rba=δbjg(bjabia)=0

(5)陀螺仪偏置残差在 j j j时刻对各状态量的雅可比

  • j j j时刻陀螺仪偏置残差 r b g r_{b_g} rbg对位移的雅可比

∂   r b g ∂ δ p j p j , = ∂ ( b j g − b i g ) ∂ δ p j p j , = 0 \frac{\partial \ r_{b_g}}{\partial \delta p_jp_j^,} = \frac{\partial (b_j^g - b_i^g)}{\partial\delta p_jp_j^,} = 0 δpjpj, rbg=δpjpj,(bjgbig)=0

  • j j j时刻陀螺仪偏置残差 r b g r_{b_g} rbg对姿态的雅可比

∂   r b g ∂ δ θ b j b j , = ∂ ( b j g − b i g ) ∂ δ θ b j b j , = 0 \frac{\partial \ r_{b_g}}{\partial \delta \theta_{b_jb_j^,}} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta \theta_{b_jb_j^,}} = 0 δθbjbj, rbg=δθbjbj,(bjgbig)=0

  • j j j时刻陀螺仪偏置残差 r b g r_{b_g} rbg对速度的雅可比

∂   r b g ∂ δ v j w = ∂ ( b j g − b i g ) ∂ δ v j w = 0 \frac{\partial \ r_{b_g}}{\partial \delta v_j^w} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta v_j^w} = 0 δvjw rbg=δvjw(bjgbig)=0

  • j j j时刻陀螺仪偏置残差 r b g r_{b_g} rbg对加速度计偏置的雅可比

∂   r b g ∂ δ b j a = ∂ ( b j g − b i g ) ∂ δ b j a = 0 \frac{\partial \ r_{b_g}}{\partial \delta b_j^a} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta b_j^a} = 0 δbja rbg=δbja(bjgbig)=0

  • j j j时刻陀螺仪偏置残差 r b g r_{b_g} rbg对陀螺仪偏置的雅可比

∂   r b g ∂ δ b j g = ∂ ( b j g − b i g ) ∂ δ b j g = I \frac{\partial \ r_{b_g}}{\partial \delta b_j^g} = \frac{\partial (b_j^g - b_i^g)}{\partial \delta b_j^g} = I δbjg rbg=δbjg(bjgbig)=I

2.2.3 残差对各状态量的雅可比计算

(1)代码分析

​ 前面已推导出残差对 i i i时刻和 j j j​时刻各状态量的雅可比形式,将总雅可比矩阵进行分块,记残差对位姿的雅可比为 ∂ e ∂ P \frac{\partial e}{\partial P} Pe,残差对速度、加速度计零偏以及陀螺仪零偏的雅可比为 ∂ e ∂ V \frac{\partial e}{\partial V} Ve。由于残差维度为15,位置和姿态的自由度分别为3和4,故 ∂ e ∂ P \frac{\partial e}{\partial P} Pe的维度是 15 × 7 15 \times 7 15×7。同理,由于速度、加速度计零偏以及陀螺仪零偏均为3,故 ∂ e ∂ V \frac{\partial e}{\partial V} Ve的维度是 15 × 9 15 \times 9 15×9。雅可比矩阵由残差对 k k k时刻和 k + 1 k+1 k+1时刻的雅可比组成,形式如下:
[ ∂ e ∂ P k ∂ e ∂ V k ∂ e ∂ P k + 1 ∂ e ∂ V k + 1 ] \left[\begin{array}{cc} \frac{\partial e}{\partial P_k} & \frac{\partial e}{\partial V_k} & \frac{\partial e}{\partial P_{k+1}} & \frac{\partial e}{\partial V_{k+1}} \end{array} \right] [PkeVkePk+1eVk+1e]
(2)代码实现

// 15: 维护两帧之间的PVQ + 加速度零偏 + 角速度零偏
// 7: 位姿自由度
// 9: 速度与零偏自由度
class IMUFactor : public ceres::SizedCostFunction<15, 7, 9, 7, 9>
{
    public:
    IMUFactor() = delete;
    IMUFactor(IntegrationBase* _pre_integration):pre_integration(_pre_integration)
    {
    }
    /**
     * @brief  使用ceres解析求导,必须重载这个函数
     * 
     * @param[in] parameters 这是一个二维数组,每个参数块都是一个double数组,而一个观测会对多个参数块形成约束
     * @param[in] residuals 残差的计算结果,是一个一维数组,残差就是该观测量和约束的状态量通过某种关系形成残差
     * @param[in] jacobians 残差对参数块的雅克比矩阵,这是一个二维数组,其中对任意一个参数块的雅克比矩阵都是一个一维数组
     * @return true 
     * @return false 
     */
    virtual bool Evaluate(double const *const *parameters, 
                          double *residuals, 
                          double **jacobians) const
    {
        // 便于后续计算,把double类型的参数块都转换成eigen
        // imu预积分约束的参数是相邻两帧的位姿 速度和零偏  i表示前一帧, j表示后一帧
        Eigen::Vector3d Pi(parameters[0][0], parameters[0][1], parameters[0][2]);
        Eigen::Quaterniond Qi(parameters[0][6], parameters[0][3], 
                              parameters[0][4], parameters[0][5]);

        Eigen::Vector3d Vi(parameters[1][0], parameters[1][1], parameters[1][2]);
        Eigen::Vector3d Bai(parameters[1][3], parameters[1][4], parameters[1][5]);
        Eigen::Vector3d Bgi(parameters[1][6], parameters[1][7], parameters[1][8]);

        Eigen::Vector3d Pj(parameters[2][0], parameters[2][1], parameters[2][2]);
        Eigen::Quaterniond Qj(parameters[2][6], parameters[2][3], 
                              parameters[2][4], parameters[2][5]);

        Eigen::Vector3d Vj(parameters[3][0], parameters[3][1], parameters[3][2]);
        Eigen::Vector3d Baj(parameters[3][3], parameters[3][4], parameters[3][5]);
        Eigen::Vector3d Bgj(parameters[3][6], parameters[3][7], parameters[3][8]);

        // 定义残差大小  将double类型的残差映射成15*1的eigen对象
        Eigen::Map<Eigen::Matrix<double, 15, 1>> residual(residuals);  
        // 得到残差(具体实现在下面)
        residual = pre_integration->evaluate(Pi, Qi, Vi, Bai, Bgi,
                                            Pj, Qj, Vj, Baj, Bgj);
// 因为ceres没有g2o设置信息矩阵的接口,因此置信度直接乘在残差上,这里通过LLT分解,相当于将信息矩阵开根号
// 也就是说进行如下转换: 令P = pp^T, 则e^TPe = e^Tpp^Te = (p^Te)^T(p^Te)  p^Te作为新的残差
        // 其中, P为预积分的协方差矩阵的逆(即信息矩阵)
        Eigen::Matrix<double, 15, 15> sqrt_info = Eigen::LLT<Eigen::Matrix<double, 15, 15>>(pre_integration->covariance.inverse()).matrixL().transpose();
        // 这就是带有信息矩阵的残差
        residual = sqrt_info * residual;
        
        // 下面进行雅可比的计算
        if (jacobians)
        {
            double sum_dt = pre_integration->sum_dt;
            // 预先求出对偏置的雅可比
            Eigen::Matrix3d dp_dba = pre_integration->jacobian.template block<3, 3>(O_P, O_BA);
            Eigen::Matrix3d dp_dbg = pre_integration->jacobian.template block<3, 3>(O_P, O_BG);

            Eigen::Matrix3d dq_dbg = pre_integration->jacobian.template block<3, 3>(O_R, O_BG);

            Eigen::Matrix3d dv_dba = pre_integration->jacobian.template block<3, 3>(O_V, O_BA);
            Eigen::Matrix3d dv_dbg = pre_integration->jacobian.template block<3, 3>(O_V, O_BG);

            if (pre_integration->jacobian.maxCoeff() > 1e8 || 
                pre_integration->jacobian.minCoeff() < -1e8)
            {
                ROS_WARN("numerical unstable in preintegration");
            }
            
            if (jacobians[0])
            {
                // 第0列 —— 第6列(前7列)计算残差对第i时刻位姿的雅可比(平移3个量, 旋转4个量)
                Eigen::Map<Eigen::Matrix<double, 15, 7, Eigen::RowMajor>> 
                    									jacobian_pose_i(jacobians[0]);
                jacobian_pose_i.setZero();
                // i时刻平移残差对平移量的雅可比  Qi: q_{b_i}^w
                jacobian_pose_i.block<3, 3>(O_P, O_P) = -Qi.inverse().toRotationMatrix();
                // i时刻平移残差对姿态(旋转矩阵R)的雅可比  
                // R_w^{b_i} * [0.5gdelta_t^2 + Pj - Pi - vi * delta_t]
                // Utility::skewSymmetric的作用是将向量转换成反对称矩阵
                jacobian_pose_i.block<3, 3>(O_P, O_R)=Utility::skewSymmetric(Qi.inverse()
								  * (0.5 * G * sum_dt * sum_dt + Pj - Pi - Vi * sum_dt));

#if 0
                jacobian_pose_i.block<3, 3>(O_R, O_R) = -(Qj.inverse() * Qi).
                    												  toRotationMatrix(); 
#else           // 零偏修正后的旋转预积分量: q_{b_j}^{b_i}
                Eigen::Quaterniond corrected_delta_q = pre_integration->delta_q * Utility::deltaQ(dq_dbg * (Bgi - pre_integration->linearized_bg));
                // Qleft(Qj.inverse() * Qi): [q_w^{b_j} * q_{b_I}^w]_L 左乘矩阵
                // Qright(corrected_delta_q): 旋转预积分量corrected_delta_q的右乘矩阵
                // bottomRightCorner<3, 3>: 取右下角的3*3矩阵为虚部
                jacobian_pose_i.block<3, 3>(O_R, O_R) = -(Utility::Qleft(Qj.inverse() * Qi) * Utility::Qright(corrected_delta_q)).bottomRightCorner<3, 3>();
#endif
                // i时刻速度残差对姿态(旋转矩阵R)的雅可比  Qi: q_{b_i}^w
                jacobian_pose_i.block<3, 3>(O_V, O_R) = 
                           Utility::skewSymmetric(Qi.inverse() * (G * sum_dt + Vj - Vi));
				// 求出的雅可比矩阵再乘上前面计算出来的信息矩阵作为权重
                jacobian_pose_i = sqrt_info * jacobian_pose_i;  

                if (jacobian_pose_i.maxCoeff()>1e8 || jacobian_pose_i.minCoeff() < -1e8)
                {
                    ROS_WARN("numerical unstable in preintegration");
                }
            }
            if (jacobians[1])
            {
                // 第7列 —— 第15列(共9列)计算残差对第i时刻速度v_i、加速度偏置b_{a_i}、角速度偏置b_{w_i}的雅可比(3个3维,共9维)
                Eigen::Map<Eigen::Matrix<double, 15, 9, Eigen::RowMajor>> 
                    						          jacobian_speedbias_i(jacobians[1]);
                jacobian_speedbias_i.setZero();
                // j时刻平移残差对速度量的雅可比: -q_w^{b_i} * \delta_t  Qi: q_{b_i}^w
                jacobian_speedbias_i.block<3, 3>(O_P, O_V - O_V) = -
                    						    Qi.inverse().toRotationMatrix() * sum_dt;
                // j时刻平移残差对加速度偏置的雅可比: -J_{b_a}^{\alpha}
                jacobian_speedbias_i.block<3, 3>(O_P, O_BA - O_V) = -dp_dba;
                // j时刻平移残差对角速度偏置的雅可比: -J_{b_g}^{\alpha}
                jacobian_speedbias_i.block<3, 3>(O_P, O_BG - O_V) = -dp_dbg;
#if 0
            jacobian_speedbias_i.block<3, 3>(O_R, O_BG - O_V) = -dq_dbg;
#else  
            // [(q_{b_j}^w)^{-1} \otimes q_{b_i}^w \otimes q_{b_i}^{b_i}]_L * J_{b_g}^q
            // 其中, q_{b_j}^w由Qj表示    q_{b_i}^w由Qi表示    
            // 预积分量q_{b_i}^{b_i}由pre_integration->delta_q表示
            // dq_dbg表示姿态对角速度偏置的雅可比J_{b_g}^q
            // bottomRightCorner<3, 3>()取右下角的3*3矩阵,即取虚部
                jacobian_speedbias_i.block<3, 3>(O_R, O_BG - O_V) = -Utility::Qleft
       (Qj.inverse() * Qi * pre_integration->delta_q).bottomRightCorner<3, 3>() * dq_dbg;
#endif
                // i时刻速度残差对速度量的雅可比: -q_w^{b_i}
                jacobian_speedbias_i.block<3, 3>(O_V, O_V - O_V) = -
                    								     Qi.inverse().toRotationMatrix();
                // i时刻速度残差对加速度偏置的雅可比: -J_{b_a}^{\beta}
                jacobian_speedbias_i.block<3, 3>(O_V, O_BA - O_V) = -dv_dba;
                // i时刻速度残差对角速度偏置的雅可比: -J_{b_g}^{\beta}
                jacobian_speedbias_i.block<3, 3>(O_V, O_BG - O_V) = -dv_dbg;

                // i时刻加速度偏置残差对加速度偏置的雅可比: -I
                jacobian_speedbias_i.block<3, 3>(O_BA, O_BA - O_V) = -
                    									    Eigen::Matrix3d::Identity();
                // i时刻角速度偏置残差对角速度偏置的雅可比: -I
                jacobian_speedbias_i.block<3, 3>(O_BG, O_BG - O_V) = -
                    										Eigen::Matrix3d::Identity();
				// 求出的雅可比矩阵再乘上前面计算出来的信息矩阵作为权重
                jacobian_speedbias_i = sqrt_info * jacobian_speedbias_i;  
            }
            if (jacobians[2])
            {
                // 第16列 —— 第22列(共7列)计算残差对第j时刻位姿的雅可比(平移3个量, 旋转4个量)
                Eigen::Map<Eigen::Matrix<double, 15, 7, Eigen::RowMajor>> 
                    									jacobian_pose_j(jacobians[2]);
                jacobian_pose_j.setZero();
                // j时刻平移残差对平移量的雅可比  Qj: q_{b_j}^w
                jacobian_pose_j.block<3, 3>(O_P, O_P) = Qi.inverse().toRotationMatrix();

#if 0
            jacobian_pose_j.block<3, 3>(O_R, O_R) = Eigen::Matrix3d::Identity();
#else
                // 零偏修正后的旋转预积分量: q_{b_j}^{b_i}
                Eigen::Quaterniond corrected_delta_q = pre_integration->delta_q * Utility::deltaQ(dq_dbg * (Bgi - pre_integration->linearized_bg));
                // Qleft(corrected_delta_q.inverse() * Qi.inverse() * Qj): [q_{b_i}^{b_j} \otimes q_w^{b_i} \otimes q_{b_j}^w]_L 左乘矩阵
                // bottomRightCorner<3, 3>: 取右下角的3*3矩阵为虚部
                jacobian_pose_j.block<3, 3>(O_R, O_R) = Utility::Qleft
             (corrected_delta_q.inverse() * Qi.inverse() * Qj).bottomRightCorner<3, 3>();
#endif
                jacobian_pose_j = sqrt_info * jacobian_pose_j;
            }
            if (jacobians[3])
            {
                // 第23列 —— 第31列(共9列)计算残差对第j时刻速度v_j、加速度偏置b_{a_j}、角速度偏置b_{w_j}的雅可比(3个3维,共9维)
                Eigen::Map<Eigen::Matrix<double, 15, 9, Eigen::RowMajor>> 
                    								jacobian_speedbias_j(jacobians[3]);
                jacobian_speedbias_j.setZero();
                // j时刻速度残差对速度量的雅可比  q_w^{b_i}
                jacobian_speedbias_j.block<3, 3>(O_V, O_V - O_V) = 
                    								Qi.inverse().toRotationMatrix();
                // j时刻加速度偏置残差对加速度偏置的雅可比
                jacobian_speedbias_j.block<3, 3>(O_BA, O_BA - O_V) = 
                    								Eigen::Matrix3d::Identity();
                // j时刻角速度偏置残差对角速度偏置的雅可比
                jacobian_speedbias_j.block<3, 3>(O_BG, O_BG - O_V) = 
                    								Eigen::Matrix3d::Identity();
                jacobian_speedbias_j = sqrt_info * jacobian_speedbias_j;
            }
        }
        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值