OpenCV实战——尺度不变特征检测器

本文介绍了OpenCV中两种尺度不变特征检测器——SURF和SIFT。SURF利用Hessian矩阵检测特征点,通过近似高斯核实现高效计算。SIFT则基于拉普拉斯滤波器响应,提供更准确的定位但计算成本更高。文章详细阐述了两种算法的工作原理并提供了相关代码示例。
摘要由CSDN通过智能技术生成

0. 前言

特征检测的不变性是一个重要概念,虽然方向不变性(即使图像旋转也能检测到相同特征点)能够被简单特征点检测器(例如 FAST 特征检测器等)处理,但难以实现在图像尺度改变时特征保持不变。为了解决这一问题,在计算机视觉中引入了尺度不变特征的概念。
无论对象是在哪个比例下拍摄的,不仅要对关键点进行一致的检测,而且还要计算与每个检测到的特征点相关联的尺度因子。理想情况下,对于在两个不同图像上以不同尺度表征的同一对象点,计算出的尺度因子的比率等于它们各自尺度的比率。已经提出了多种尺度不变的特征,本节将介绍 SURF (Speeded Up Robust Features) 特征,它不仅具有尺度不变性,而且还具有很高的计算效率。

1. SURF 特征检测器

SURF 特征检测器在 OpenCV 中使用 cv::SURF 函数实现。

(1) 可以通过 cv::FeatureDetector 使用 SURF 特征检测器:

评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>