好用的三维绘图软件CREO学习镜像和构造模式

首先,我们先来看镜像

 

镜像的操作与CAD十分类似

 构造模式表现的是辅助线类似的功能,可以将已经绘制的图形通过右键点击来进行构造模式的改变。

### Infonce Loss Cosine Similarity 的关系 InfoNCE (Information Noise Contrastive Estimation) 损失函数通过对比学习框架来增强模型的学习能力。该损失函数旨在最大化正样本对之间的相似度,同时最小化负样本对之间的相似度。余弦相似度作为一种常见的相似度度量方法,在 InfoNCE 中被广泛应用于计算不同样本间的相似性得分。 具体来说,InfoNCE 损失可以定义如下: 给定一个查询向量 \( q \),以及一组候选向量 \( k_1, k_2, ..., k_N \),其中只有一个为正样本 \( k^+ \),其余均为负样本,则 InfoNCE 损失可表达为: \[ L_{\text{infoNCE}}(q,k^{+},k^{-})=-\log{\frac{\exp(\operatorname{sim}(q,k^{+})/\tau)}{\sum _{{i=1}}^{N}\exp (\operatorname{sim}(q,k_i)/\tau)}} \] 这里 sim 表示相似度测量方式,通常采用的就是余弦相似度[^1];而 τ 是温度参数,用来控制分布的锐利程度。 当使用余弦相似度作为 sim 函数时,上述公式变为: \[ L_{\text{infoNCE}}(q,k^{+},k^{-})=-\log{\frac{\exp({\cos(q,k^{+})}/\tau)}{\sum _{{i=1}}^{N}\exp ({\cos(q,k_i)}/\tau)}} \] 这种组合使得 InfoNCE 能够有效地捕捉到数据内在的相关性模式,尤其适用于涉及高维稀疏特征的任务场景。 #### 应用实例 在自然语言处理领域,InfoNCE 结合余弦相似度可用于训练语义匹配模型,比如孪生网络架构下的句子编码器。这类模型能够将输入文本映射成固定长度的稠密向量表示,并利用 InfoNCE 来优化这些向量的空间布局,从而提高下游任务的表现效果,如问答系统、对话生成等。 ```python import torch from torch import nn class SimCSE(nn.Module): def __init__(self, encoder, temperature=0.07): super(SimCSE, self).__init__() self.encoder = encoder self.cos_sim = nn.CosineSimilarity(dim=-1) self.temperature = temperature def forward(self, input_ids_a, attention_mask_a, input_ids_b=None, attention_mask_b=None): if input_ids_b is not None: z1 = self.encoder(input_ids=input_ids_a, attention_mask=attention_mask_a).last_hidden_state[:, 0] z2 = self.encoder(input_ids=input_ids_b, attention_mask=attention_mask_b).last_hidden_state[:, 0] cos_sim_matrix = self.cos_sim(z1.unsqueeze(1), z2.unsqueeze(0)) / self.temperature labels = torch.arange(cos_sim_matrix.size(0)).long().to(cos_sim_matrix.device) loss_fct = nn.CrossEntropyLoss() loss = loss_fct(cos_sim_matrix, labels) return {"loss": loss} else: outputs = self.encoder(input_ids=input_ids_a, attention_mask=attention_mask_a) return outputs ``` 此代码片段展示了如何构建基于预训练语言模型(如 BERT)并结合 InfoNCE 损失来进行无监督句间相似度建模的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值