近年来,计算机视觉领域一直在不断追求更高效、更准确的目标检测算法。在这方面,Yolov 引入了一种新的网络架构,称为BiFormer,通过动态稀疏注意力机制构建高效的金字塔网络,显著提升了小目标检测的性能。
BiFormer的核心思想是结合了Transformer和金字塔网络的优势。Transformer是一种基于自注意力机制的神经网络模型,广泛应用于自然语言处理领域。而金字塔网络是一种多尺度特征融合的网络结构,能够有效地处理不同尺度的目标。
在传统的目标检测算法中,小目标的检测性能往往较差。这是因为小目标通常具有较少的信息量,很容易被周围的背景干扰。BiFormer通过引入动态稀疏注意力机制,能够在不同层次上自适应地关注重要的特征。这样一来,网络可以更加关注小目标所在的区域,并提取更准确的特征。
为了进一步提升小目标检测的性能,BiFormer还引入了金字塔网络的概念。金字塔网络通过在不同层次上提取特征,并将它们融合起来,从而达到多尺度目标检测的效果。BiFormer通过在Transformer中嵌入金字塔结构,使得网络能够同时关注不同层次的特征,从而提高了对小目标的检测能力。
下面是BiFormer的简化代码示例:
import torch