YOLOv11改进-注意力-引入双层路由注意力机制(Biformer)解决小目标、遮挡等问题

          本篇文章将介绍一个新的改进模块——Biformer,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析Biformer他做了什么,BiFormer 是一种新型视觉Transformer架构,通过双层路由注意力机制(Bi-level Routing Attention, BRA)实现动态、查询感知的稀疏注意力,从而在保持高计算效率的同时,捕捉长距离依赖关系随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。

代码:YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_impro

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值