本篇文章将介绍一个新的改进模块——Biformer,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析Biformer他做了什么,BiFormer 是一种新型视觉Transformer架构,通过双层路由注意力机制(Bi-level Routing Attention, BRA)实现动态、查询感知的稀疏注意力,从而在保持高计算效率的同时,捕捉长距离依赖关系。随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。
代码:YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_impro