第P9周:YOLOv5-Backbone模块实现

  •   🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制
    import torch
    import torch.nn as nn
    import torchvision.transforms as tranforms
    import torchvision
    from torchvision import transforms,datasets
    import os,PIL,pathlib,warnings
    warnings.filterwarnings("ignore")
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device
    import os,PIL,random,pathlib
    data_dir='./9-data/'
    data_dir=pathlib.Path(data_dir)
    data_paths=list(data_dir.glob('*'))
    classNames=[str(path).split("\\")[1] for path in data_paths]
    classNames
    
    # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
    train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        # transforms.RandomHorizontalFlip(), # 随机水平翻转
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    
    test_transform = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    
    total_data = datasets.ImageFolder("./9-data/",transform=train_transforms)
    total_data
    total_data.class_to_idx
    
    train_size=int(0.8 * len(total_data))
    test_size =len(total_data)-train_size
    train_dataset,test_dataset=torch.utils.data.random_split(total_data, [train_size, test_size])
    train_dataset,test_dataset
    
    batch_size=4
    train_dl=torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
    test_dl=torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
    
    for X,y in test_dl:
        print("shape of X[N,C,H,W]:",X.shape)
        print("shape of y",y.shape,y.dtype)
        break
    
    import torch.nn.functional as F
    
    def autopad(k,p=None):
        if p is None:
            p=k//2 if isinstance(k,int) else [x // 2 for x in k]
        return p
    
    class Conv(nn.Module):
        def __init__(self,c1,c2,k=1,s=1,p=None,g=1,act=True):
                super().__init__()
                self.conv=nn.Conv2d(c1,c2,k,s,autopad(k,p),groups=g,bias=False)
                self.bn=nn.BatchNorm2d(c2)
                self.act=nn.SiLU() if act is True else (act if isinstance(act,nn.moudle) else nn.Identity())
    
        def forward(self,x):
            return self.act(self.bn(self.conv(x)))
    
    
    class Bottleneck(nn.Module):
        def __init__(self,c1,c2,shortcut=True,g=1,e=0.5):
            super().__init__()
            c_=int(c2*e)
            self.cv1=Conv(c1,c_,1,1)
            self.cv2=Conv(c_,c2,3,1,g=g)
            self.add=shortcut and c1==c2
    
        def forward(self,x):
            return x+self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
    
    class C3(nn.Module):
        def __init__(self,c1,c2,n=1,shortcut=True,g=1,e=0.5):
            super().__init__()
            c_=int(c2*e)
            self.cv1=Conv(c1,c_,1,1)
            self.cv2=Conv(c1,c_,1,1)
            self.cv3=Conv(2*c_,c2,1)
            self.m=nn.Sequential(*(Bottleneck(c_,c_,shortcut,g,e=1.0) for _ in range(n)))
    
        def forward(self,x):
            return self.cv3(torch.cat((self.m(self.cv1(x)),self.cv2(x)),dim=1))
    
    class SPPF(nn.Module):
        def __init__(self,c1,c2,k=5):
            super().__init__()
            c_=c1//2
            self.cv1=Conv(c1,c_,1,1)
            self.cv2=Conv(c_*4,c2,1,1)
            self.m=nn.MaxPool2d(kernel_size=k,stride=1,padding=k//2)
    
        def forward(self,x):
            x=self.cv1(x)
            with warnings.catch_warnings():
                warnings.simplefilter('ignore')
                y1=self.m(x)
                y2=self.m(y1)
                return self.cv2(torch.cat([x,y1,y2,self.m(y2)],1))
    
    class YOLOv5_backbone(nn.Module):
        def __init__(self):
            super(YOLOv5_backbone, self).__init__()
            
            self.Conv_1 = Conv(3, 64, 3, 2, 2) 
            self.Conv_2 = Conv(64, 128, 3, 2) 
            self.C3_3   = C3(128,128)
            self.Conv_4 = Conv(128, 256, 3, 2) 
            self.C3_5   = C3(256,256)
            self.Conv_6 = Conv(256, 512, 3, 2) 
            self.C3_7   = C3(512,512)
            self.Conv_8 = Conv(512, 1024, 3, 2) 
            self.C3_9   = C3(1024, 1024)
            self.SPPF   = SPPF(1024, 1024, 5)
            
            # 全连接网络层,用于分类
            self.classifier = nn.Sequential(
                nn.Linear(in_features=65536, out_features=100),
                nn.ReLU(),
                nn.Linear(in_features=100, out_features=4)
            )
            
        def forward(self, x):
            x = self.Conv_1(x)
            x = self.Conv_2(x)
            x = self.C3_3(x)
            x = self.Conv_4(x)
            x = self.C3_5(x)
            x = self.Conv_6(x)
            x = self.C3_7(x)
            x = self.Conv_8(x)
            x = self.C3_9(x)
            x = self.SPPF(x)
            
            x = torch.flatten(x, start_dim=1)
            x = self.classifier(x)
    
            return x
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))
        
    model = YOLOv5_backbone().to(device)
    model
    
    # 统计模型参数量以及其他指标
    import torchsummary as summary
    summary.summary(model, (3, 224, 224))
    
    def train(dataloader,model,loss_fn,optimizer):
        size=len(dataloader.dataset)
        num_batches=len(dataloader)
        train_loss,train_acc=0,0
        for X,y in dataloader:
            X,y = X.to(device),y.to(device)
            pred=model(X)
            loss=loss_fn(pred,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
            train_loss+=loss.item()
    
        train_acc /=size
        train_loss /=num_batches
    
        return train_acc,train_loss
    
    def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小
        num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
        test_loss, test_acc = 0, 0
        
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                imgs, target = imgs.to(device), target.to(device)
                
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
                
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
        test_acc  /= size
        test_loss /= num_batches
    
        return test_acc, test_loss
    
    import copy
    
    optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
    loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    
    epochs     = 60
    
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标
    
    for epoch in range(epochs):
        
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
        
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        
        # 保存最佳模型到 best_model
        if epoch_test_acc > best_acc:
            best_acc   = epoch_test_acc
            best_model = copy.deepcopy(model)
        
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
        
        # 获取当前的学习率
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                              epoch_test_acc*100, epoch_test_loss, lr))
        
    # 保存最佳模型到文件中
    PATH = './best_model.pth'  # 保存的参数文件名
    torch.save(best_model.state_dict(), PATH)
    
    print('Done')
    
    import matplotlib.pyplot as plt
    #隐藏警告
    import warnings
    warnings.filterwarnings("ignore")               #忽略警告信息
    plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
    plt.rcParams['figure.dpi']         = 100        #分辨率
    
    epochs_range = range(epochs)
    
    plt.figure(figsize=(12, 3))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()
    
    # 将参数加载到model当中
    best_model.load_state_dict(torch.load(PATH, map_location=device))
    epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
    
    epoch_test_acc, epoch_test_loss
    

 

总结:现在已经有点感觉框架能基本自己敲出来,继续加油

  • 8
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值