《machine learning》week 2,class 3

Andrew Ng 《machine learning》——week 2,class 3

Computing Parameters Analytically

目前为止, 我们讨论求θ的最优值都是通过梯度下降的方法来求,接下来将讨论另外一种求θ最优值的算法——正规方程法


目录

3.1 Normal Equation

学过微积分的同学应该知道怎么求解下面这个函数的最小值。
一元二次方程
其实就是求导,然后让导数等于0就可以解出最小值啦~~~

那么对于多元多次的方程怎么解呢?那就是接下来说的正规方程的解法啦。例如:
多元方程组

多元方程组

但是针对不用的问题采用的方法也会有不同,下面是梯度下降和正规方程的优缺点对比。
优缺点对比

主要的就是大数量的多少,数据量大的时候还是选择用梯度下降会比较好,性能也会好一些。

3.2 Normal Equation Noninvertibility

什么是矩阵不可逆,这个概念学过线代的同学都知道,因此不再赘述。这里指的是下图所示情况:
矩阵不可逆
对于出现这种不可逆的情况的时候,Octave会用pinv求出伪逆,这样也不会影响算法的计算流程。一般是很少出现不可逆的情况的,所以不必要太关注。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值