Andrew Ng 《machine learning》——week 2,class 3
Computing Parameters Analytically
目前为止, 我们讨论求θ的最优值都是通过梯度下降的方法来求,接下来将讨论另外一种求θ最优值的算法——正规方程法
目录
3.1 Normal Equation
学过微积分的同学应该知道怎么求解下面这个函数的最小值。
其实就是求导,然后让导数等于0就可以解出最小值啦~~~
那么对于多元多次的方程怎么解呢?那就是接下来说的正规方程的解法啦。例如:
但是针对不用的问题采用的方法也会有不同,下面是梯度下降和正规方程的优缺点对比。
主要的就是大数量的多少,数据量大的时候还是选择用梯度下降会比较好,性能也会好一些。
3.2 Normal Equation Noninvertibility
什么是矩阵不可逆,这个概念学过线代的同学都知道,因此不再赘述。这里指的是下图所示情况:
对于出现这种不可逆的情况的时候,Octave会用pinv求出伪逆,这样也不会影响算法的计算流程。一般是很少出现不可逆的情况的,所以不必要太关注。