2019-10-12 拉普拉斯变换的理解

拉普拉斯变换(Laplace transform)属于线性变换,是在控制领域绕不过去的积分变换。同时拉普拉斯变换与傅里叶变换也存在着绕不过去的关系。

傅里叶变换、傅里叶级数

傅里叶级数针对周期函数,傅里叶变换是针对非周期函数,可以将原函数展开为三角函数之和,可以参考傅里叶级数及傅里叶变换,这里对这种的异同不展开讨论,重点对于傅里叶变换与拉普拉斯变换的异同进行讨论
傅里叶变换属于拉普拉斯变换中的一种情况,是将满足条件的信号展开成如下的形式:
F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i w t   d t F(\omega)=\int_{-\infty}^{\infty} f(t)e^{-iwt}\, dt F(ω)=f(t)eiwtdt傅里叶逆变换的形式为:
f ( t ) = ∫ − ∞ ∞ F ( ω ) e i w t   d w f(t)=\int_{-\infty}^{\infty} F(\omega)e^{iwt}\, dw f(t)=F(ω)eiwtdw
考虑在[自动控制原理][03][zhangfan_space]——欧拉公式的理解中对欧拉公式的解释,傅里叶变换公式可以写为:
F ( ω ) = ∫ − ∞ ∞ f ( t ) ( cos ⁡ w t − i sin ⁡ w t )   d t F(\omega)=\int_{-\infty}^{\infty} f(t)(\cos wt-i\sin wt)\, dt F(ω)=f(t)(coswtisinwt)dt这就是傅里叶变换最开始想要从频域对非周期信号进行信号分解的形式。

其中,要进行傅里叶变换, f ( x ) f(x) f(x)的充分不必要条件是满足狄利克雷条件(Dirichlet Conditions)

  1. 在一周期内,函数连续或只有有限个第一类间断点;
  2. 在一周期内,极大值和极小值的数目应是有限个;
  3. 在一周期内,信号是绝对可积的,即 ∫ − ∞ ∞ ∣ f ( t ) ∣   d t < ∞ \int_{-\infty}^{\infty} \vert f(t)\vert\, dt<\infty f(t)dt<

其中,第3个条件是最难保证的,那么为了利用傅里叶变换,拉普拉斯变换应运而生。

拉普拉斯变换

为了使傅里叶变换能够使用,在傅里叶变换中加入了一个调节因子(Adjustment factor) e − σ t e^{-\sigma t} eσt,这个因子的妙处在于它可以在 t → + ∞ t\rightarrow+\infty t+的时候,使得函数 e − σ t f ( t ) e^{-\sigma t}f(t) eσtf(t)迅速地衰减,从而达到绝对可积的目的。

e − σ t e^{-\sigma t} eσt猪队友啊哈哈哈哈,活生生把人家拉下来)

那么,傅里叶变换变形之后,在 t t t的正半轴,就可以进行傅里叶变换了,如下所示:
F ( ω ) = ∫ 0 + ∞ f ( t ) e − σ t e − i w t   d t = ∫ 0 + ∞ f ( t ) e − ( σ + i w ) t   d t F(\omega)=\int_{0}^{+\infty} f(t)e^{-\sigma t}e^{-iwt}\, dt=\int_{0}^{+\infty} f(t)e^{-(\sigma+iw)t}\, dt F(ω)=0+f(t)eσteiwtdt=0+f(t)e(σ+iw)tdt

定义: s = σ + i w s=\sigma+iw s=σ+iw
就可以得到: F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t F(s)=\int_{0}^{+\infty} f(t)e^{-st}\, dt F(s)=0+f(t)estdt
这就是拉普拉斯变换。

傅里叶变换和拉普拉斯变换的异同

傅里叶变换:将函数分解到频率不同、幅值为1的圆上;
拉普拉斯变换:将函数分解到频率、幅值均不同的圆上。

为什么是圆上,参考傅里叶级数及傅里叶变换中对欧拉公式的分析解释。

拉普拉斯变换的优点

将微分、积分等复杂形式变为简单的乘、除法,不知道这个灵感先出现的还是数学先推导出来的。

拉普拉斯变换的常见形式(时间域-s域)


时间域S域
δ ( t ) \delta(t) δ(t) 1 1 1
δ T ( t ) = ∑ n = 0 ∞ δ ( t − n T ) \delta_T(t)=\sum_{n=0}^{\infty} \delta(t-nT) δT(t)=n=0δ(tnT) 1 1 − e − T s \frac{1}{1-e^{-Ts}} 1eTs1
1 ( t ) 1(t) 1(t) 1 s \frac{1}{s} s1
t t t 1 s 2 \frac{1}{s^2} s21
t 2 2 \frac{t^2}{2} 2t2 1 s 3 \frac{1}{s^3} s31
e − a t e^{-at} eat 1 s + a \frac{1}{s+a} s+a1
t e − a t te^{-at} teat 1 s + a 2 \frac{1}{{s+a}^2} s+a21
e − a t − e − b t e^{-at}-e^{-bt} eatebt 1 s + a − 1 s + b \frac{1}{s+a}-\frac{1}{s+b} s+a1s+b1
sin ⁡ w t \sin wt sinwt w w 2 + s 2 \frac{w}{w^2+s^2} w2+s2w
cos ⁡ w t \cos wt coswt s w 2 + s 2 \frac{s}{w^2+s^2} w2+s2s

参考:https://wenku.baidu.com/view/d32dc14acf84b9d528ea7a33.html
(注:不够严谨的地方望指正,谢谢?)

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值