【机器学习】GNN和GCN

GNN

在这个例子中,A,B,C,D,E是节点,()为特征。
在这里插入图片描述

聚合

在这里插入图片描述
即将每个节点邻居的特征根据 规定的 权重参数,计算出邻居信息。

更新

在这里插入图片描述
将该节点周围邻居的特征即上一步得到的邻居信息,按照一定的权重参数,加到该节点本身的特征上,将其作为该节点最终的特征。

循环

在这里插入图片描述
思考如果重复两次前两部的步骤(聚合、更新),则由于A由于第二轮的时候加进了C,而C在第一轮加进了E的信息,导致A在第二轮结束后,加入了E的信息

作用

在这里插入图片描述

GCN

GCN主要就是来解决GNN中计算邻居信息时,各个 邻居特征的权重参数怎么确定的问题

平均法

例子:
在这里插入图片描述
但是这样只关注了邻居的特征,而忽略了自己本身的特征,所以要添加一个闭环,即加一个单位矩阵" I ",这样,就得到了下图中第二个公式:自己的特征加上邻居的特征才是自己最终的特征。
在这里插入图片描述
注意,此时是将所有邻居的信息加起来,还没有做平均操作。
平均后的公式为:(其中A尖=(A+I))
在这里插入图片描述

平均法存在的问题

若A只有一个邻居B,则使用平均法,A会很大程度的受到邻居B的影响
在这里插入图片描述

GCN是怎么解决平均法的问题的

在这里插入图片描述
GCN的公式如图所示,可见这样的话,如果使用上边的例子:
在这里插入图片描述
这里即使A和B差距很大,但是在计算的过程中,由于B的邻居很多,导致B的度很大,这样B÷根号B的度,这样B对A的影响就很有限了。

拉普拉斯对称归一化矩阵

问题

问题:如果A只有一个朋友B,且B也只有一个朋友A,但是B和A差距较大,这样该如何解决B对A的影响。
等大神解答。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值