随着企业对高效沟通和精准服务的需求日益增长,传统的呼叫系统逐渐无法满足市场的复杂需求。AI呼叫核心技术凭借其强大的智能语音识别、自然语言处理以及自动化流程管理能力,正在为呼叫中心、客户服务以及销售外呼等领域带来前所未有的变革。本文将从AI外呼的核心技术出发,基于技术架构的组成、技术壁垒的构建和核心技术的拆解三部分,为读者深入分析:
- 技术架构的组成
在深入探讨AI呼叫行业的核心技术时,我们发现它涵盖了多个维度,这些技术相互交织,共同推动着行业的创新和发展。AI呼叫的核心技术可以概括为三个主要领域:自然语义处理能力、SaaS端的架构能力以及Web RTC技术。
1.自然语言处理能力
随着大模型技术的发展,自然语言处理的能力得到了显著提升,尽管其在某些方面的重要性可能有所降低,但它仍然是AI呼叫技术中不可或缺的一部分。特别是在处理复杂查询(NLP)、意图识别和理解方面,自然语义处理技术仍然具有重要的研发价值。此外,它与RAG搜索增强技术以及大模型之间的结合,为AI呼叫系统提供了更加强大的理解和响应能力。
2.SaaS端的架构能力
这一能力包括对超高并发的处理能力,这需要架构师进行精心的技术设计,以确保系统能够稳定地处理大量的并发请求。此外,Saa S端的架构还需要管理整个智能呼叫业务流程,包括客户管理系统、客户工单管理系统以及智能呼叫的短信、人工呼叫等一系列配套功能。这些系统的实现,不仅提高了服务的效率和质量,也为企业提供了一个全面的客户服务解决方案。
3.Web RTC技术
Web RTC是一种支持网页浏览器进行实时通信的技术,它使得数字人能够在电话端进行应用,为用户提供更加丰富和直观的交互体验。在通信层面,Web RTC技术需要解决如何在高噪音环境下进行智能化降噪和声音的VAD(Voice Activity Detection)打断处理等问题。这些通信端的技术挑战,是长时间需要开发和优化的能力。在GPT四代O技术尚未广泛应用的情况下,非端到端的技术需要将语音识别成文本后进行处理和合成。如果对噪音的处理不够有效,就可能产生大量的噪声数据,这将严重影响大模型在实际生产环境中的表现和应用。
- 如何去构建技术壁垒
在AI呼叫行业,构建技术壁垒是确保竞争优势的关键。这一过程涉及多个方面,从数据的积累到知识库的构建,再到技术架构的持续升级。以下是构建技术壁垒的详细步骤和考量:
1.数据积累
数据是AI技术发展的基础。为了搭建高效的降噪模型和自然语言处理(NLP)意图理解模型,我们需要积累大量的文本、音频乃至数字人视频数据。这些数据不仅为模型训练提供了原材料,还帮助我们不断优化算法,提升系统的准确性和响应速度。
2.私有知识库的构建
私有知识库的构建是提升用户体验的重要途径。通过构建私有知识库,我们可以在RAG搜索增强技术的辅助下,为用户提供更加丰富和个性化的服务体验。尽管单一客户的私有知识可能有限,但作为云服务提供商,我们能够提供广泛的公共知识库,帮助客户扩展其对话智能,类似于为企业提供了一个类似大学的公共知识平台,以支持其持续的培训和发展。
3.技术架构的持续升级
技术架构的持续升级是保持技术领先的关键。长达六年以上的代码迭代和升级,使我们在Web RTC通信技术、SaaS端服务架构等方面积累了丰富的工程化经验。这些经验转化为大量的应用代码,形成了我们独特的技术资产。
通过上述步骤,我们形成了强大的竞争壁垒。展望未来,AI呼叫行业的技术壁垒将继续围绕数据的深度挖掘、知识库的智能化扩展以及技术架构的创新升级展开。随着AI技术的不断进步,我们可以预见,这些技术壁垒将变得更加坚固,为行业带来更加稳定和持久的竞争优势。
- 如何去拆解核心技术
在AI呼叫行业的技术演进中,我们逐步深入到其核心能力的构建,这些能力是确保服务高效、智能和个性化的基础。以下是对AI呼叫行业核心技术的详细阐述:
1.高精度语义识别能力
对话的大脑能力,即大模型本身,是AI呼叫系统智能的核心。它不仅包括自然语言处理(NLP)技术,还涵盖了语音识别、语音合成等关键AI能力。在实际应用中,尽管这些技术的识别率可能存在局限,但通过平台端的智能纠错、智能匹配、热词推荐以及专属知识库等辅助手段,可以显著提升服务的垂直化和行业特色适应性。这些辅助技术使得AI呼叫系统能够更好地理解和响应行业特定的需求和语境。
2.高灵活自定义外呼策略
智能外呼策略是提高呼叫效率的关键。通过规则化的调控,可以显著提高接通率。自动化的调整机制能够将接通率提升至55%到60%之间。此外,通过精心设计的禁止呼叫策略、重呼策略以及线路分配策略,可以进一步降低投诉率,同时保持高接通率。这些策略的实施,需要对呼叫行为进行细致的分析和优化,确保每一次呼叫都能达到最佳效果。
3.专属语音识别和语音合成能力
为了提高语音识别的效果,声音克隆技术被引入到AI呼叫系统中。通过对录音师的声音进行克隆,结合预先录制的常见语句,可以实现高达90%的真实感。同时,结合特定业务场景的大模型实时语音合成,声音克隆技术能够与实时语音合成相辅相成,使得合成语音更加真实和饱满,为用户提供更加自然和愉悦的听觉体验。
从智能语音识别到自然语言理解,从自动化流程管理到深度数据分析,AI呼叫系统不仅重新定义了客户服务和销售外呼的效率与质量,更为企业与客户之间的互动带来了前所未有的深度与温度。未来,随着人工智能与物联网、大数据、区块链等前沿技术的深度融合,AI呼叫系统将拥有更广阔的应用场景和更强大的功能。它或许能够实现更精准的客户预测、更智能的多语言交互,甚至是基于情感分析的个性化服务。让我们期待AI外呼进一步的发展!