最小二乘法的几何解释
这篇文章用通俗易懂的语言,从几何的角度解释了最小二乘法的解为什么是 x^=(ATA)−1ATb
线性方程组的几何意义
为了从几何的角度解释最小二乘法,我们先回顾一下,线性方程组的几何意义。线性方程组可以从行和列两个角度看。
举例,看如下简单的线性方程组:
{
x1+x2=3←a−x1+x2=1←b
从行的角度看
线性方程组的解就是直线 a 和直线
从图上很容易可以看出该线性方程组的解为 x1=1,x2=2 ,
所以从行的角度看,线性方程组的每一行都代表空间中的几何图形(二维时是直线,三维时是平面,高维时是高维空间中的一个”平面“),线性方程组的解就是这些图形的交点or交线or交面。
从列的角度看
从列的角度看时,先把上面的线性方程组写成矩阵的形式
[ 1 1−1 1]×[x1x2]=[31]↑↑↑a1a2b
这样看还不是很直观,再把上式拆开,写成下面这个样子:
[1−1]×x1+[11]×x2=[31