数值计算之 最小二乘法(2)最小二乘的几何意义
前言
上篇中,超定线性方程组 A x = b Ax=b Ax=b的最小二乘解满足 A T A x = A T b A^TAx=A^Tb ATAx=ATb,当 A A A是列满秩矩阵时, x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)−1ATb。
线性最小二乘解的存在性
首先要确定的是:对于任何超定的线性方程组 A x = b Ax=b Ax=b,都是有最小二乘解的。
证明:
A T A x = A T b r a n k ( A T A , A T b ) = r a n k ( A T ( A , b ) ) ≤ r a n k ( A T ) r a n k ( A T A , A T b ) ≥ r a n k ( A T A ) = r a n k ( A T ) ∴ r a n k ( A T A , A T b ) = r a n k ( A T A ) A^TAx=A^Tb \\ rank(A^TA,A^Tb)=rank(A^T(A,b))\le rank(A^T) \\ rank(A^TA,A^Tb)\ge rank(A^TA)=rank(A^T) \\ \therefore rank(A^TA,A^Tb)=rank(A^TA) A