数值计算之 最小二乘法(2)最小二乘的几何意义

本文探讨了线性最小二乘解的存在性,证明了任何超定线性方程组都有最小二乘解。最小二乘解的几何意义在于,它是在矩阵列空间中寻找一个向量,使实际向量与该空间向量的偏差最小。当实际向量与列空间垂直时,最小二乘解为零向量。这一解释揭示了超定线性方程组最小二乘解的直观概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数值计算之 最小二乘法(2)最小二乘的几何意义

前言

上篇中,超定线性方程组 A x = b Ax=b Ax=b的最小二乘解满足 A T A x = A T b A^TAx=A^Tb ATAx=ATb,当 A A A是列满秩矩阵时, x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb

线性最小二乘解的存在性

首先要确定的是:对于任何超定的线性方程组 A x = b Ax=b Ax=b,都是有最小二乘解的

证明:
A T A x = A T b r a n k ( A T A , A T b ) = r a n k ( A T ( A , b ) ) ≤ r a n k ( A T ) r a n k ( A T A , A T b ) ≥ r a n k ( A T A ) = r a n k ( A T ) ∴ r a n k ( A T A , A T b ) = r a n k ( A T A ) A^TAx=A^Tb \\ rank(A^TA,A^Tb)=rank(A^T(A,b))\le rank(A^T) \\ rank(A^TA,A^Tb)\ge rank(A^TA)=rank(A^T) \\ \therefore rank(A^TA,A^Tb)=rank(A^TA) A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值