a billion ways to grasp

https://blog.csdn.net/weixin_26752765/article/details/108132661
翻译自
https://darshanhegde.github.io/blog/2020/heuristics-for-robotic-grasping/
讲述了各种抓取
https://rpal.cse.usf.edu/competition_iros2021/

Grasping is one of the fundamental subtask of a robotic manipulation
pipeline. Both learning based and physics / geometry based grasping
methods can benefit from grasp sampling heuristics in this article.
Even if you are using a large arm farm to teach your robots the skills
of grasping, you can save your robots quite a lot of time with these
heuristics. This article summarizes the most common grasp sampling
heuristics used in literature.

Heuristics For Robotic Grasping
June 10, 2020
This article contains heuristics for following:
Parallel jaw grasps.
Suction grasps.
Linear push policies for improving parallel jaw grasps.
Toppling policies for improving suction grasps.

Grasping is one of the fundamental subtask of a robotic manipulation pipeline. Both learning based and physics / geometry based grasping methods can benefit from grasp sampling heuristics in this article. Even if you are using a large arm farm to teach your robots the skills of grasping, you can save your robots quite a lot of time with these heuristics. This article summarizes the most common grasp sampling heuristics used in literature.

Some of the common ways to use these heuristics are:

Generating labels for learning based grasp planners (offline): 6-DOF
GraspNet [4] uses these samplers for evaluation with physics based
simulation. Grasps that retain the object between the gripper are
considered successful after a predefined shaking motion. DexNet [2][3]
evaluates these grasps based on analytic quasi-static grasp wrench
space (GWS) analysis. Both methods score these sampled grasps based on
how good they are in resisting disturbances. These scores are used as
labels for training the grasp planners. During grasp synthesis
(inference): DexNet [2][3] uses these sampled grasps as seeds for
Cross Entropy Method (CEM), and optimizes grasps based on predicted
grasp quality from GQ-CNN (Grasp Quality Convolutional Network).
Traditional geometric methods, prune these candidate grasps if they
are kinematically infeasible or if they result in collision between
gripper and other objects or environment. The best of these samples
are picked for execution. We will summarize the details of heuristics
for each type of grippers used for manipulation.

Approach based samplers:

These methods are characterized by approach vector of the gripper (red-dashed line) which typically aligns with normal to the palm (purple axis).

Approach based sampler. Picture Credit: Billion ways to Grasp [1]

Pseudo code for approach based sampler:

Notations:

在这里插入图片描述
在这里插入图片描述

antipodal

Dex-net 2.0: Deep learning to plan robust grasps with synthetic point
clouds and analytic grasp metrics

dexnet 1.0

在这里插入图片描述

Using geometry to detect grasp poses in 3d point clouds,” in Robotics research

approach

Leveraging Big Data for Grasp Planning

G3db: A database of successful and failed grasps with rgb-d images, point clouds, mesh
models and gripper parameters

An integrated simulator and dataset that combines grasping and vision for deep lear

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值