LRBF无网格方法预测根区土壤水分分布附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥内容介绍

摘要: 土壤水分是植物生长发育的关键因素,准确预测根区土壤水分分布对于精准农业和节水灌溉至关重要。传统的数值方法,如有限元法和有限差分法,需要复杂的网格划分,计算效率低且难以处理复杂地形。局部径向基函数(LRBF)无网格法因其无需网格划分、精度高、易于并行计算等优点,近年来在求解偏微分方程领域得到了广泛应用。本文综述了LRBF无网格方法在预测根区土壤水分分布中的应用现状,分析了其优势和不足,并展望了其未来的发展方向。

关键词: LRBF无网格方法; 根区土壤水分; 数值模拟; 偏微分方程; 精准农业

1. 引言

根区土壤水分的时空变化直接影响着植物的生长和产量。准确预测根区土壤水分分布对于优化灌溉策略、提高水资源利用效率以及实现精准农业至关重要。传统的土壤水分模拟方法,例如有限元法(FEM)和有限差分法(FDM),需要预先划分网格,这在处理复杂地形和边界条件时效率低下且容易出现数值误差。网格的生成和维护也增加了计算的复杂性,尤其是在三维模拟中。

近年来,无网格方法作为一种新型数值模拟技术,因其无需网格划分、适应性强、易于处理复杂几何形状等优势,受到了广泛关注。局部径向基函数(LRBF)无网格法是其中一种较为成熟且应用广泛的方法。它利用局部支持域内节点信息的径向基函数插值来逼近解,避免了网格生成的繁琐过程,提高了计算效率。本文将重点探讨LRBF无网格方法在预测根区土壤水分分布中的应用,并对其优势、不足及未来发展方向进行分析。

2. LRBF无网格方法的基本原理

LRBF无网格方法的核心思想是利用径向基函数(RBF)进行插值。径向基函数是一种仅依赖于节点间距离的函数,常用的RBF包括高斯函数、多二次函数和薄板样条函数等。LRBF方法采用局部支持域的概念,只利用节点周围有限个节点的信息进行插值,避免了全局矩阵的求解,从而提高了计算效率和稳定性。

在土壤水分模拟中,通常需要求解Richards方程,这是一个非线性偏微分方程,描述了土壤水分的运动。LRBF无网格法通过将Richards方程离散化,得到一个代数方程组,然后利用迭代法求解该方程组,得到根区土壤水分的时空分布。具体的离散化方法包括点配点法、伽辽金法等。不同的离散化方法对计算精度和效率有不同的影响。

3. LRBF无网格方法在根区土壤水分模拟中的应用

LRBF无网格方法在根区土壤水分模拟中的应用主要体现在以下几个方面:

  • 复杂地形处理: LRBF方法无需网格划分,可以方便地处理复杂的地形和边界条件,例如不规则的田块形状、起伏的地表以及复杂的根系分布。这对于实际应用具有重要的意义,因为田间条件往往比较复杂。

  • 根系影响模拟: 根系吸收水分是影响根区土壤水分分布的重要因素。LRBF方法可以通过在模型中引入根系分布信息,模拟根系的吸水作用,从而提高模拟精度。

  • 非饱和土壤模拟: Richards方程描述了非饱和土壤中的水分运动,LRBF方法可以有效地求解该方程,模拟土壤水分在不同含水量下的运动规律。

  • 多尺度模拟: LRBF方法可以与其他方法结合,实现多尺度模拟,例如将宏观尺度的LRBF模拟与微观尺度的根系模型耦合,提高模拟的精度和效率。

4. LRBF无网格方法的优势与不足

优势:

  • 无需网格划分:

     避免了网格生成和维护的繁琐过程,提高了计算效率。

  • 精度高:

     LRBF方法可以获得高精度的数值解。

  • 适应性强:

     可以处理复杂地形和边界条件。

  • 易于并行计算:

     局部支持域的特性使得LRBF方法易于并行计算,提高计算速度。

不足:

  • 形状参数选择:

     RBF的形状参数选择对计算精度和稳定性有重要影响,需要进行仔细的调整。

  • 计算成本:

     虽然LRBF方法避免了网格划分,但对于节点数较大的情况,计算成本仍然较高。

  • 局部支持域大小选择:

     局部支持域的大小选择也需要仔细考虑,过大或过小都会影响计算精度和效率。

5. 未来发展方向

未来,LRBF无网格方法在根区土壤水分模拟中的发展方向主要包括:

  • 高精度算法研究:

     开发更高精度、更高效的LRBF算法,例如改进的离散化方法和形状参数优化算法。

  • 与其他模型耦合:

     将LRBF方法与其他模型耦合,例如根系模型、植物生长模型和气候模型,构建更加完整的土壤水分模拟系统。

  • 三维模拟:

     将LRBF方法应用于三维根区土壤水分模拟,更真实地反映土壤水分的时空变化。

  • 数据同化技术:

     结合遥感和地面观测数据,利用数据同化技术提高土壤水分模拟的精度。

6. 结论

LRBF无网格方法为预测根区土壤水分分布提供了一种有效的方法。其无需网格划分、精度高、适应性强等优点使其在处理复杂地形和边界条件方面具有显著优势。虽然该方法还存在一些不足,但随着算法的改进和与其他技术的结合,LRBF无网格方法将在精准农业和节水灌溉中发挥越来越重要的作用。 未来的研究应着力于提高算法精度和效率,并将其应用于更复杂的土壤水分模拟场景。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值