✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
塑料热压成型是一种广泛应用于汽车、电子和医疗等行业的制造工艺。为了提高热压成型的效率和质量,需要对热压成型过程进行准确的预测。本文提出了一种基于人工蜂群算法优化支持向量机(ABC-SVR)的多输入单输出(MISO)塑料热压成型回归预测模型。该模型通过优化SVR的参数,提高了预测的精度。
引言
塑料热压成型是一种利用热量和压力将塑料板材塑造成所需形状的工艺。热压成型过程受到多种因素的影响,包括温度、压力、成型时间和材料特性。为了优化热压成型工艺,需要对这些因素进行准确的预测。
方法
本文提出的ABC-SVR模型包括以下步骤:
-
**数据收集:**收集塑料热压成型过程的输入和输出数据,包括温度、压力、成型时间和成型产品的厚度。
-
**数据预处理:**对数据进行标准化和归一化,以消除不同变量之间的量纲差异。
-
**支持向量机(SVR)模型构建:**使用SVR模型对输入数据和输出数据进行拟合。SVR是一种监督学习算法,可以处理非线性数据。
-
**人工蜂群算法(ABC)优化:**使用ABC算法优化SVR模型的参数,包括核函数、惩罚参数和核参数。ABC算法是一种受蜜蜂觅食行为启发的优化算法。
-
**模型评估:**使用均方根误差(RMSE)和相关系数(R2)等指标评估优化后SVR模型的预测精度。
📣 部分代码
%% 初始化
clear
close all
clc
warning off
%% 数据读取
%输入输出数据
input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
output=data(:,end); %data的最后面一列为输出的指标值
N=length(output); %全部样本数目
testNum=15; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%% 划分训练集、测试集
input_train = input(1:trainNum,:)';
output_train =output(1:trainNum)';
input_test =input(trainNum+1:trainNum+testNum,:)';
output_test =output(trainNum+1:trainNum+testNum)';
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%% 获取输入层节点、输出层节点个数
⛳️ 运行结果
结果
本文对ABC-SVR模型进行了实验评估,结果表明:
-
优化后的SVR模型比未优化的SVR模型具有更高的预测精度。
-
ABC算法可以有效地优化SVR模型的参数,提高预测性能。
-
ABC-SVR模型对塑料热压成型过程的厚度预测具有良好的泛化能力。
结论
本文提出的ABC-SVR模型提供了一种准确且高效的塑料热压成型回归预测方法。该模型通过优化SVR模型的参数,提高了预测精度。ABC-SVR模型可以帮助制造商优化热压成型工艺,提高产品质量和生产效率。
🔗 参考文献
[1] 孟繁艺.基于支持向量机与神经网络的供水管网余氯组合预测模型研究[D].昆明理工大学[2024-02-13].DOI:CNKI:CDMD:2.1018.867706.
[2] 王芬,刘阳,郝建斌,等.基于MABC-SVR的边坡安全系数预测模型[J].安全与环境工程, 2019, 26(2):7.DOI:CNKI:SUN:KTAQ.0.2019-02-026.
[3] 邓建球,赵建忠,陈洪,等.ABC算法优化SVR的磨损故障预测模型[J].兵工自动化, 2018, 37(10):5.DOI:CNKI:SUN:BGZD.0.2018-10-013.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类