✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着工业 4.0 的到来,智能制造和自动化水平不断提高,设备故障诊断已成为工业生产中的关键技术之一。传统故障诊断方法主要依赖于专家经验和手工特征提取,存在主观性强、鲁棒性差等问题。近年来,深度学习技术在图像识别、自然语言处理等领域取得了突破性进展,为故障诊断提供了新的思路。
CNN 卷积神经网络简介
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,它通过卷积运算和池化操作提取图像中的特征,具有强大的特征学习能力和鲁棒性。CNN 在图像分类、目标检测等视觉任务中表现出色,也逐渐被应用于故障诊断领域。
CNN 故障诊断原理
CNN 故障诊断的基本原理是将故障数据转换为图像格式,然后利用 CNN 模型进行特征提取和故障分类。具体步骤如下:
-
**数据预处理:**将故障数据转换为图像格式,如时频谱图、振动信号图像等。
-
**特征提取:**利用 CNN 模型对图像进行特征提取,提取故障相关的特征。
-
**故障分类:**将提取的特征输入到分类器中,进行故障分类。
CNN 故障诊断优势
CNN 故障诊断相较于传统方法具有以下优势:
-
**特征学习能力强:**CNN 可以自动学习故障相关的特征,无需人工特征提取,减少了主观因素的影响。
-
**鲁棒性好:**CNN 具有较强的鲁棒性,对噪声和干扰具有较好的容忍度,提高了故障诊断的准确性。
-
**可扩展性强:**CNN 模型可以根据故障数据的特点进行调整和优化,具有较强的可扩展性,可以应用于不同类型的故障诊断场景。
CNN 故障诊断应用
CNN 故障诊断已在机械故障诊断、电力故障诊断等领域得到广泛应用。例如:
-
**机械故障诊断:**利用 CNN 对振动信号图像进行特征提取,实现轴承故障、齿轮故障等机械故障的诊断。
-
**电力故障诊断:**利用 CNN 对电力信号时频谱图进行特征提取,实现电力变压器故障、电力线路故障等电力故障的诊断。
总结
CNN 卷积神经网络故障诊断是一种基于深度学习技术的故障诊断方法,具有特征学习能力强、鲁棒性好、可扩展性强等优势。随着深度学习技术的发展,CNN 故障诊断将得到进一步的研究和应用,为工业生产中的故障诊断提供更加智能和高效的解决方案。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类