✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
拉盖尔-高斯 (LG) 光束是一种特殊类型的激光束,具有独特的螺旋相位分布和环状横向模式。它们在各种科学和技术应用中具有重要意义,包括光学通信、显微镜和激光加工。
数学描述
LG 光束的数学描述如下:
E(r, φ, z) = E_0 (w_0/w(z)) exp(-r^2/w(z)^2) L_p^|l| (2r^2/w(z)^2) exp(ilφ) exp(-ikz^2/(2R(z)))
其中:
-
E(r, φ, z) 是电场分布
-
E_0 是光束的幅度
-
w_0 是光束的腰部半径
-
w(z) 是光束半径在 z 方向上的变化
-
L_p^|l| 是拉盖尔多项式
-
p 和 l 分别是径向和角向模态指数
-
k 是波矢
-
R(z) 是光束曲率半径
性质
LG 光束具有以下性质:
-
螺旋相位分布: LG 光束具有螺旋状的相位分布,相位沿光束传播方向旋转。
-
环状横向模式: LG 光束具有环状的横向模式,其强度分布呈同心圆状。
-
自聚焦: LG 光束具有自聚焦特性,当光束传播一定距离后,会自动聚焦在焦点处。
-
轨道角动量: LG 光束携带轨道角动量,其大小与模态指数 l 成正比。
应用
LG 光束在以下应用中具有重要意义:
-
光学通信: LG 光束可用于实现高容量光通信,因为它们可以携带多个模态,从而增加信息传输容量。
-
显微镜: LG 光束可用于提高显微镜的分辨率和成像质量,因为它们可以产生具有不同螺旋相位的照明模式。
-
激光加工: LG 光束可用于进行精密激光加工,因为它们可以产生具有特定形状和尺寸的聚焦光斑。
-
量子信息: LG 光束可用于操纵量子态,因为它可以携带轨道角动量和自旋角动量。
结论
拉盖尔-高斯光束是一种独特的激光束,具有螺旋相位分布和环状横向模式。它们在光学通信、显微镜、激光加工和量子信息等领域具有广泛的应用。随着研究的不断深入,LG 光束有望在未来开辟更多令人兴奋的应用前景。
📣 部分代码
%定义拉盖尔多项式
function Lag=Laguerre(p,l,t);
% if p==0;
% Lag=1;
% else if p==1;
% Lag=(1+l).*ones(size(t))-t;
% else
% Lag=((2*p-1+l).*ones(size(t))-t).*Laguerre(p-1,l,t)-(p-1+l).*ones(size(t)).*Laguerre(p-2,l,t);
% end
% end
% end
Lag=0;
for k=0:1:p
Lag0=factorial(abs(l)+p)*(-t).^k./factorial(abs(l)+k)./factorial(k)./factorial(p-k);
Lag=Lag+Lag0;
end
⛳️ 运行结果
🔗 参考文献
[1] 陈晓东.高阶拉盖尔高斯光束紧聚焦诱导的磁化场特性研究[D].哈尔滨工业大学[2024-03-02].
[2] 张文.拉盖尔—高斯光束湍流大气传播特性[D].中南民族大学,2015.DOI:10.7666/d.D804245.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类