多维时序 | LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文提出了一种基于多头注意力机制的卷积神经网络结合长短记忆神经网络(CNN-LSTM-Multihead-Attention)的温度预测模型。该模型利用卷积神经网络提取时空特征,长短记忆神经网络捕捉时间序列依赖性,多头注意力机制增强模型对重要特征的关注。实验结果表明,所提出的模型在温度预测任务上取得了优异的性能,有效提高了预测精度。

引言

温度预测在气象学、农业和能源管理等领域至关重要。传统的时间序列预测方法(如自回归集成移动平均模型)在处理复杂非线性时间序列数据时存在局限性。深度学习模型,特别是卷积神经网络(CNN)和长短记忆神经网络(LSTM),因其强大的特征提取和时间序列建模能力而被广泛应用于温度预测。

模型结构

所提出的 CNN-LSTM-Multihead-Attention 模型由以下模块组成:

  • **卷积层:**提取时空特征。

  • **LSTM 层:**捕捉时间序列依赖性。

  • **多头注意力层:**增强对重要特征的关注。

多头注意力机制

多头注意力机制是一种神经网络层,它允许模型专注于输入序列的不同子空间。在我们的模型中,多头注意力层接收 LSTM 层的输出作为输入,并输出加权特征表示:

Attention(Q, K, V) = softmax(Q * K^T / sqrt(d_k)) * V

其中,Q、K 和 V 分别是查询、键和值矩阵,d_k 是键向量的维度。

模型训练

模型使用均方误差(MSE)作为损失函数进行训练,优化器采用 Adam。训练过程包括以下步骤:

  1. 将历史温度数据输入卷积层。

  2. 将卷积层的输出输入 LSTM 层。

  3. 将 LSTM 层的输出输入多头注意力层。

  4. 计算损失函数并更新模型参数。

实验结果

我们使用公开的温度数据集对所提出的模型进行了评估。实验结果表明,CNN-LSTM-Multihead-Attention 模型在预测精度方面优于基线模型,包括:

  • 自回归集成移动平均模型 (ARIMA)

  • 卷积神经网络 (CNN)

  • 长短记忆神经网络 (LSTM)

结论

本文提出了一种基于多头注意力机制的卷积神经网络结合长短记忆神经网络的温度预测模型。该模型有效地利用了时空特征、时间序列依赖性和重要特征关注,从而提高了预测精度。未来工作将探索其他注意力机制和模型改进,以进一步提升预测性能。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

[1] 邵星,曹洪宇,王翠香,等.一种基于注意力机制的VMD-CNN-LSTM短期风电功率预测方法:CN202211414113.7[P].CN115907120A[2024-04-06].

[2] 陈港,张石清,赵小明.结合数据平衡和注意力机制的CNN+LSTM的自然语音情感识别[J].计算机系统应用, 2021.DOI:10.15888/j.cnki.csa.007917.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 15
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Attention-LSTM(注意力机制长短期记忆神经网络)是一种在LSTM基础上加上注意力机制神经网络,可以对多个输入进行加权处理并输出一个结果。下面是MATLAB实现Attention-LSTM多输入单输出的代码示例: ```matlab % 定义输入数据和标签 x1 = rand(10, 20); % 第一个输入数据,大小为10x20 x2 = rand(10, 20); % 第二个输入数据,大小为10x20 y = rand(1, 1); % 输出标签,大小为1x1 % 定义Attention-LSTM模型参数 hidden_size = 64; % 隐藏层大小 input_dim = size(x1, 2) + size(x2, 2); % 输入维度 output_dim = 1; % 输出维度 % 定义Attention-LSTM模型 lstm = lstmLayer(hidden_size, 'OutputMode', 'last'); attention = attentionLayer(hidden_size); fc = fullyConnectedLayer(output_dim); % 定义输入层 input1 = sequenceInputLayer(size(x1, 2), 'Name', 'input1'); input2 = sequenceInputLayer(size(x2, 2), 'Name', 'input2'); % 连接Attention-LSTM模型 output1 = lstm(input1); output2 = lstm(input2); output = attention({output1, output2}); output = fc(output); % 定义损失函数和优化器 loss = regressionLayer(); optimizer = adamOptimizer; % 训练模型 miniBatchSize = 32; options = trainingOptions('adam', ... 'MaxEpochs', 100, ... 'MiniBatchSize', miniBatchSize, ... 'Shuffle', 'every-epoch', ... 'Plots', 'training-progress'); inputData = {x1, x2}; targetData = y; net = trainNetwork(inputData, targetData, [input1, input2], output, loss, optimizer, options); ``` 在上述代码中,我们首先定义了两个输入数据x1和x2,以及一个输出标签y。然后我们定义了Attention-LSTM模型的参数,包括隐藏层大小、输入维度和输出维度。接着我们定义了Attention-LSTM模型,包括LSTM层、注意力层和全连接层。然后我们定义了输入层,分别对应于x1和x2。接着我们将输入层和Attention-LSTM模型连接起来,得到输出层。最后我们定义了损失函数和优化器,并使用trainNetwork函数对模型进行训练。 需要注意的是,Attention-LSTM模型实现依赖于Deep Learning Toolbox中的lstmLayer和attentionLayer函数,因此需要先安装Deep Learning Toolbox才能运行上述代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值