✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
全驱动四旋翼无人机凭借其灵活性和机动性,在诸多领域展现出巨大的应用潜力。然而,传统四旋翼无人机的飞行姿态受限于螺旋桨的固定方向,难以实现快速、灵活的机动飞行。为了解决这一问题,本文提出了一种全新的四旋翼无人机设计,即在传统四旋翼无人机基础上引入螺旋桨倾斜机构,使螺旋桨能够在一定范围内倾斜,从而大幅提升无人机的机动性能。本文重点关注此类无人机的建模与控制问题,以期为其在实际应用中的精确控制提供理论基础。
1. 引言
近年来,无人机技术发展迅猛,已广泛应用于航拍、测绘、物流、农业等多个领域。四旋翼无人机因其结构简单、控制方便、飞行稳定性好等优点,成为无人机领域中应用最为广泛的机型之一。然而,传统四旋翼无人机的飞行姿态受限于螺旋桨的固定方向,无法实现灵活的机动飞行。例如,在应对突发情况或执行复杂任务时,传统的四旋翼无人机往往难以快速调整姿态,限制了其应用范围。
为了克服传统四旋翼无人机的局限性,本文提出了一种全新的四旋翼无人机设计,即在传统四旋翼无人机基础上引入螺旋桨倾斜机构,使螺旋桨能够在一定范围内倾斜。这种设计赋予了无人机更灵活的飞行姿态控制能力,使其能够实现更快速、更灵活的机动飞行。
2. 系统建模
2.1 动力学模型
本文采用牛顿-欧拉法建立无人机系统的动力学模型。模型中,无人机被视为刚体,其动力学方程如下:
2.2 螺旋桨倾斜机构模型
螺旋桨倾斜机构模型主要描述了螺旋桨的倾斜角度与螺旋桨产生的推力和力矩之间的关系。该模型需要考虑螺旋桨的几何参数、气动特性以及电机控制策略等因素。
2.3 系统模型简化
为了简化模型,本文对系统进行了以下假设:
-
忽略螺旋桨的旋转惯性对无人机系统的影响。
-
假设无人机飞行速度较低,忽略空气动力学影响。
-
假设电机控制系统能够精确地控制螺旋桨的转速和倾斜角度。
3. 控制系统设计
3.1 控制目标
控制目标是使无人机能够根据指令实现稳定的悬停、平稳的飞行以及灵活的机动飞行。
3.2 控制策略
本文采用反馈线性化和反步法相结合的控制策略。
-
反馈线性化: 将非线性系统转换为线性系统,从而便于进行线性控制器的设计。
-
反步法: 设计一个Lyapunov函数,并根据反步法的思想递归设计控制器,使其能够稳定系统,并跟踪期望轨迹。
3.3 控制器设计
控制器设计需要考虑以下因素:
-
无人机系统的动力学模型
-
控制目标
-
噪声和干扰的影响
-
控制器参数的整定
4. 仿真验证
本文通过MATLAB软件对所设计的控制系统进行了仿真验证。仿真结果表明,所设计的控制系统能够有效地控制无人机的飞行姿态,使其能够实现稳定的悬停、平稳的飞行以及灵活的机动飞行。
5. 结论
本文对全驱动四旋翼无人机带螺旋桨倾斜机构的建模与控制进行了研究。通过对无人机系统的动力学建模和控制策略的设计,实现了无人机的稳定悬停、平稳飞行以及灵活机动飞行。仿真结果验证了所设计控制系统的有效性。该研究成果为全驱动四旋翼无人机的实际应用提供了理论基础,并将为未来无人机技术的进一步发展提供新的思路。
⛳️ 运行结果
🔗 参考文献
[1] 孟佳东,赵志刚.小型四旋翼无人机建模与控制仿真[J].兰州交通大学学报, 2013(1):5.DOI:10.3969/j.issn.1001-4373.2013.01.015.
[2] 孟佳东,赵志刚.小型四旋翼无人机建模与控制仿真[J]. 2022(1).
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类