✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥内容介绍
深度学习在多输入分类预测领域展现出强大的能力,然而,深度置信网络 (Deep Belief Network, DBN) 作为一种重要的深度学习模型,其参数优化问题一直是限制其性能发挥的关键因素。传统的基于梯度下降的优化方法容易陷入局部最优解,且收敛速度较慢。针对这一问题,本文提出了一种基于粒子群优化算法 (Particle Swarm Optimization, PSO) 的DBN优化方法,即PSO-DBN,用于解决多输入分类预测问题。该方法结合了PSO算法的全局搜索能力和DBN强大的特征学习能力,有效地提高了模型的预测精度和收敛速度。
DBN是一种由多个受限玻尔兹曼机 (Restricted Boltzmann Machine, RBM) 堆叠而成的概率生成模型。每个RBM学习数据的潜在特征表示,通过逐层贪婪训练的方式,最终形成一个强大的特征提取器。然而,RBM的参数学习依赖于对比散度 (Contrastive Divergence, CD) 算法,该算法容易陷入局部最优,并且参数初始化对最终结果影响较大。此外,DBN的层数、每层神经元的数量等超参数的选择也需要大量的实验来确定,这增加了模型训练的复杂度和时间成本。
粒子群优化算法是一种基于群体智能的优化算法,其灵感来源于鸟群或鱼群的群体行为。PSO算法通过模拟粒子在搜索空间中的运动,通过粒子间的相互作用和自身经验来不断更新粒子的位置和速度,最终收敛到全局最优解附近。与梯度下降法相比,PSO算法具有更强的全局搜索能力,不易陷入局部最优,且参数较少,易于实现。
本文提出的PSO-DBN方法将PSO算法用于DBN的参数优化。具体而言,我们将DBN的参数,包括RBM的权重和偏置,编码为PSO算法中的粒子。每个粒子的适应度值由DBN在验证集上的分类准确率来衡量。PSO算法通过迭代更新粒子的位置和速度,不断寻找使DBN分类准确率最高的参数组合。 为了进一步提高算法的效率和精度,我们还引入了以下策略:
- 自适应惯性权重:
动态调整惯性权重,在搜索初期赋予较大的惯性权重,增强全局搜索能力;在搜索后期赋予较小的惯性权重,增强局部搜索能力,从而平衡全局和局部搜索能力,提高收敛速度。
- 非线性收敛因子:
采用非线性变化的学习因子,在搜索初期以较大的学习因子进行全局探索,在搜索后期以较小的学习因子进行局部开发,避免算法过早收敛于局部最优解。
- 精英策略:
保留每一代中适应度值最高的粒子,将其作为下一代粒子的参考,加快算法的收敛速度。
此外,针对多输入分类问题,本文研究了不同输入特征的融合策略。在实际应用中,多输入数据往往具有不同的特征维度和分布,直接将所有输入数据连接起来进行训练可能会影响模型的性能。为此,我们探索了以下几种特征融合方法:
- 简单拼接:
将不同输入特征简单拼接,作为DBN的输入。
- 加权平均:
对不同输入特征进行加权平均,权重根据特征的重要性进行调整。
- 多路输入DBN:
构建多个DBN,分别处理不同的输入特征,最后将多个DBN的输出进行融合。
通过实验,我们对比了PSO-DBN与其他优化算法,例如基于梯度下降的DBN (Gradient Descent DBN, GD-DBN) 和遗传算法优化DBN (Genetic Algorithm DBN, GA-DBN) 的性能。实验结果表明,PSO-DBN在多输入分类预测任务中具有更高的预测精度和更快的收敛速度。不同特征融合策略的比较结果也显示,选择合适的特征融合方法对于提高模型性能至关重要。
最后,本文总结了PSO-DBN方法的优势和局限性,并对未来的研究方向进行了展望。PSO-DBN方法有效地解决了DBN参数优化问题,提高了DBN在多输入分类预测任务中的性能。然而,该方法的计算复杂度仍然较高,未来可以研究更高效的优化算法或模型结构来进一步提高其效率。此外,可以探索更复杂的特征融合策略,以更好地处理多输入数据。
总而言之,本文提出了一种基于粒子群优化算法的深度置信网络多输入分类预测方法,并通过理论分析和实验验证了其有效性。该方法为解决多输入分类预测问题提供了一种新的思路,具有重要的理论意义和应用价值。 未来的研究将着重于提高算法的效率和鲁棒性,并将其应用于更广泛的实际问题中。
📣 部分代码
% GetOnInd: get indexes which are used (not dropped) nodes%GetOnInd获取使用(未删除)节点的标准。
used (not dropped) nodes%OnInd:使用(未删除)节点的标准。
%
%
%Input parameters:%输入参数
% dbn: the Original Deep Belief Nets (DBN) model%最初的深度信念网络(DBN)模型。
% DropOutRate: 0 < DropOutRate < 1%DropOutRate的取值范围为0到1
% strbm (optional): started rbm layer to dropout (Default: 1)%strbm(optional):起始rbm层的辍学(默认值:1)
%
%
%Reference:%参考
%for details of the dropout%关于辍学的细节
% Hinton et al, Improving neural networks by preventing co-adaptation of feature detectors, 2012.%Hinton等人,通过阻止功能探测器的协同适应,改善神经网络,2012年。
%
%
%Version: 20130821%版本:20130821
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Deep Neural Network:%深度神经网络 %
% %
% Copyright (C) 2013 Masayuki Tanaka. All rights reserved. %
% mtanaka@ctrl.titech.ac.jp %
% %版权(C) 2013年Masayuki Tanaka。保留所有权利。 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function OnInd = GetOnInd( dbn, DropOutRate, strbm )%建立OnInd功能函数
if( ~exist('strbm', 'var') || isempty(strbm) )%如果不存在类型strbm,变量var或者类型strbm为空
strbm = 1;%strbm为1
end
OnInd = cell(numel(dbn.rbm),1);%OnInd为行为dbn.rbm中元素的个数,列为1列的空的单元数组
for n=1:numel(dbn.rbm)%n的取值范围是1到dbn.rbm中元素的个数
dimV = size(dbn.rbm{n}.W,1);%dimV为dbn.rbm{n}行元素的大小
if( n >= strbm )%如果n大等于strbm
OnNum = round(dimV*DropOutRate(n));%OnNum为随机的dimV*DropOutRate维矩阵
OnInd{n} = sort(randperm(dimV, OnNum));%sort函数功能把数组元素按升序或降序排列 如果A是矩阵,sort(A) 对A按每一列元素按照升序排列。P=randperm(N)返回一个包含N个在0到N之间产生的随机元素的向量P=randperm(N,K)返回一个包含K个在0到N之间的随机元素向量例如:randperm(6,3)可能为[4 2 5]
else
OnInd{n} = 1:dimV;%OnInd{n}的范围是1到dimV
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP、置换流水车间调度问题PFSP、混合流水车间调度问题HFSP、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇