✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
神经气体网络(Neural Gas Network, NGN)和不断增长的神经气体网络(Growing Neural Gas Network, GNGN)是无监督学习领域中重要的聚类算法,尤其在处理高维数据和寻找数据内在结构方面表现出色。它们的核心思想是模仿神经元的竞争和适应性,以生成能够有效表示数据分布的网络结构。本文将深入探讨NGN和GNGN的原理、特性、应用以及相关研究进展,并对比分析它们的优缺点。
一、神经气体网络(NGN)
NGN是一种基于竞争学习的自组织神经网络,由Martinetz和Schulten于1991年提出。它的目标是通过迭代地调整一组神经元的位置,使其能够尽可能好地拟合输入数据的分布。与传统的K-means等聚类算法不同,NGN并非预先指定聚类中心的数量,而是通过竞争学习自动确定。
NGN的算法流程主要包括以下几个步骤:
- 初始化:
随机初始化一组神经元的位置,通常这些神经元的位置分布在输入数据空间内。
- 迭代学习:
对于每个输入数据样本,找到与其距离最近的神经元(称为“获胜神经元”)。
- 调整神经元位置:
根据获胜神经元与其邻居节点之间的关系,调整它们的位置。获胜神经元向输入数据样本方向移动,而与其相邻的神经元则以递减的学习率向相同方向移动。
- 学习率衰减:
随着迭代次数的增加,学习率逐渐衰减,使得算法能够收敛到稳定的状态。
- 邻域调整:
为了更好地适应数据的局部特性,NGN还引入了邻域的概念。邻域的大小也随着迭代次数的增加而逐渐缩小,从而使得算法能够逐渐关注数据的局部细节。
NGN的关键在于调整神经元位置的规则。它采用一种类似“气体扩散”的模型,因此得名“神经气体网络”。获胜神经元类似于气体源,它会影响其周围神经元的分布,使得整个网络能够逐渐覆盖输入数据的分布。
NGN具有以下优点:
- 无需预先指定聚类中心数量:
这使其能够适应不同复杂程度的数据集。
- 能够有效地处理高维数据:
由于其基于距离的竞争学习机制,NGN在高维空间中仍能保持较好的性能。
- 能够学习数据的拓扑结构:
通过邻域的调整,NGN能够捕捉数据之间的连接关系,从而揭示数据的内在拓扑结构。
然而,NGN也存在一些缺点:
- 计算复杂度较高:
每次迭代都需要计算所有神经元与输入数据样本之间的距离,这在高维数据和大量神经元的情况下会带来较大的计算开销。
- 对初始值敏感:
神经元的初始位置会影响算法的最终结果,可能导致收敛到局部最优解。
- 参数调整困难:
学习率、邻域大小等参数的选择对算法的性能有显著影响,需要仔细调整。
二、不断增长的神经气体网络(GNGN)
为了克服NGN的一些局限性,Fritzke于1995年提出了不断增长的神经气体网络(Growing Neural Gas Network, GNGN)。GNGN是一种自适应的聚类算法,它不仅能够调整神经元的位置,还能够动态地增加和删除神经元,从而更好地适应数据的分布。
GNGN与NGN相比,主要有以下几点改进:
- 动态增长:
GNGN从一个较小的神经元集合开始,根据数据的分布不断增加神经元。
- 神经元插入:
当输入数据样本与现有神经元之间的距离超过一定的阈值时,GNGN会插入一个新的神经元。新神经元通常位于距离最远的两个神经元之间。
- 神经元删除:
为了避免网络过度增长,GNGN会定期删除那些长时间没有被激活的神经元。
- 边权重的维护:
GNGN维护一个表示神经元之间连接关系的边集合。每次有输入数据样本被激活时,其对应的神经元之间的边权重会增加,而长时间没有被激活的边则会被删除。
GNGN的算法流程大致如下:
- 初始化:
初始化两个随机位置的神经元。
- 迭代学习:
对于每个输入数据样本,找到与其距离最近的两个神经元,分别称为“获胜神经元”和“次胜神经元”。
- 调整神经元位置:
调整获胜神经元和次胜神经元及其邻居节点的位置,类似于NGN的调整规则。
- 边权重更新:
更新获胜神经元和次胜神经元之间的边权重。
- 神经元插入:
如果满足插入条件,则插入一个新的神经元。
- 神经元删除:
如果满足删除条件,则删除一个神经元。
- 学习率衰减:
随着迭代次数的增加,学习率逐渐衰减。
GNGN相比于NGN,具有以下优点:
- 自适应的网络结构:
GNGN能够根据数据的分布动态地调整网络结构,从而更好地适应不同的数据集。
- 更强的鲁棒性:
由于其动态增长的特性,GNGN对初始值不敏感,能够更好地避免收敛到局部最优解。
- 更高的精度:
通过不断增加神经元,GNGN能够获得更高的聚类精度。
然而,GNGN也存在一些缺点:
- 参数更多:
GNGN引入了更多的参数,例如插入阈值、删除阈值等,这些参数的选择对算法的性能有重要影响,需要仔细调整。
- 计算复杂度更高:
每次迭代都需要进行神经元的插入和删除操作,这会增加算法的计算复杂度。
三、NGN和GNGN的研究进展与应用
NGN和GNGN作为经典的聚类算法,已经被广泛应用于各个领域。
- 数据可视化:
NGN和GNGN能够将高维数据映射到低维空间,从而实现数据的可视化。例如,可以使用NGN或GNGN将基因表达数据映射到二维空间,从而观察基因之间的关系。
- 图像处理:
NGN和GNGN可以用于图像分割、图像识别等任务。例如,可以使用NGN或GNGN将图像像素进行聚类,从而实现图像分割。
- 模式识别:
NGN和GNGN可以用于模式识别任务,例如手写数字识别、语音识别等。
- 机器人控制:
NGN和GNGN可以用于机器人学习环境模型,例如学习机器人的运动控制策略。
- 金融分析:
NGN和GNGN可以用于金融市场分析,例如股票价格预测、风险管理等。
近年来,针对NGN和GNGN的研究主要集中在以下几个方面:
- 算法的改进:
研究者们提出了各种改进的NGN和GNGN算法,例如基于核函数的NGN、基于模糊逻辑的NGN等,旨在提高算法的性能和鲁棒性。
- 参数的自适应调整:
为了避免手动调整参数的困难,研究者们提出了各种参数自适应调整的方法,例如基于遗传算法的参数优化、基于强化学习的参数优化等。
- 算法的并行化:
为了提高算法的计算效率,研究者们提出了各种并行化的NGN和GNGN算法,例如基于GPU的并行化实现、基于分布式计算的并行化实现等。
- 与其他算法的融合:
研究者们将NGN和GNGN与其他算法相结合,例如与支持向量机相结合、与深度学习模型相结合等,以构建更强大的学习系统。
四、结论与展望
NGN和GNGN是无监督学习领域中重要的聚类算法,它们基于竞争学习和自组织的原理,能够有效地处理高维数据和学习数据的拓扑结构。GNGN通过动态调整网络结构,克服了NGN的一些局限性,具有更强的鲁棒性和更高的精度。
尽管NGN和GNGN已经取得了显著的成果,但仍然存在一些挑战需要解决。未来的研究方向可以包括:
- 进一步提高算法的效率:
减少计算复杂度,提高算法的运行速度。
- 设计更有效的参数调整方法:
实现参数的自动化调整,降低人工干预的成本。
- 拓展算法的应用领域:
将NGN和GNGN应用于更广泛的实际问题中。
- 研究更深层次的自组织学习机制:
探索更加灵活和智能的神经网络结构。
⛳️ 运行结果
🔗 参考文献
[1] 毕厚杰,李涛.基于SIP的下一代网络(NGN)[J].通信世界, 2005(36):1.DOI:CNKI:SUN:JSTX.0.2005-36-027.
[2] 刘月玲.NGN网络QoS的测量技术的研究[D].南京邮电大学[2025-03-04].DOI:CNKI:CDMD:2.1012.315358.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇