✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要:非平稳信号的时频分析是信号处理领域的核心问题之一。传统时频分析方法在分辨率和能量集中度方面存在局限性,尤其在处理具有复杂时变频率和瞬态特性的信号时。近年来,同步挤压变换(Synchrosqueezing Transform, SST)作为一种新兴的高分辨率时频分析工具,凭借其出色的频率重排能力,有效提升了时频表示的能量集中度。然而,标准的SST在处理含有多组分或频率交叉的信号时仍存在能量泄漏和交叉项干扰等问题。本文基于对SST原理的深入理解,提出一种改进的多同步挤压变换(Improved Multi-Synchrosqueezing Transform, IMSST),旨在进一步提升时频分析的分辨率和抗干扰能力。IMSST的核心思想在于引入更精细的瞬时频率估计和基于局部能量密度的多尺度同步挤压策略。通过理论推导和仿真实验,我们证明了IMSST在分析具有多组分、时变频率以及噪声干扰的非平稳信号时,相较于传统的短时傅里叶变换(STFT)、连续小波变换(CWT)以及标准的SST,能够提供更高分辨率、更清晰的时频表示,有效抑制能量泄漏和交叉项。最后,我们将IMSST应用于实际非平稳信号的分析,展示其在工程和科学研究中的潜在应用价值。
关键词:非平稳信号;时频分析;同步挤压变换;多同步挤压;高分辨率
-
引言
非平稳信号是指其统计特性随时间变化的信号,广泛存在于生物医学、机械故障诊断、地球物理、通信等众多领域。对非平稳信号进行有效的时频分析,即同时揭示信号的频率成分随时间的变化规律,是理解信号内在机制和进行后续处理的基础。常用的线性时频分析方法,如短时傅里叶变换(STFT)和连续小波变换(CWT),因其时频分辨率受不确定性原理的限制,在分析具有快速时变频率或瞬时冲击的信号时存在不足。STFT采用固定长度的窗函数,导致时域和频域分辨率相互制约,无法兼顾。CWT采用可变尺度的窗口,对瞬态信号具有较好的时域局部化能力,但在处理窄带信号时频域分辨率相对较低。
为了克服线性时频方法的局限性,研究人员提出了多种非线性时频分析方法,如Wigner-Ville分布(WVD)及其派生方法。WVD具有优异的能量集中性,但在处理多组分信号时存在严重的交叉项干扰。尽管存在多种去交叉项的方法,但往往以牺牲分辨率或引入伪迹为代价。
近年来,基于重排技术的时频分析方法引起了广泛关注。同步挤压变换(Synchrosqueezing Transform, SST)是其中一种典型的重排技术,由Daubechies等人于2011年首次提出。SST的核心思想是利用信号的瞬时频率信息,将时频平面上扩散的能量“挤压”到瞬时频率曲线附近,从而提高时频表示的能量集中度。SST通常建立在CWT的基础上,通过估计每个时频点处的瞬时频率,将该点的能量重新分配到相应的频率上。SST在处理单组分调幅调频(AM-FM)信号时表现出色,能够恢复瞬时频率和瞬时幅值。
然而,标准的SST在处理含有多个组分,特别是当组分频率相互接近或发生交叉时,仍然面临挑战。瞬时频率估计的精度会受到多组分信号的干扰,导致能量挤压不准确,产生能量泄漏和交叉项干扰。此外,标准的SST通常依赖于一次瞬时频率估计和一次能量挤压,这对于复杂的多组分信号可能不足以完全消除能量扩散。
为了解决这些问题,本文提出了一种改进的多同步挤压变换(IMSST)方法。IMSST在以下几个方面对标准SST进行了改进:首先,我们采用一种更鲁棒的瞬时频率估计方法,该方法能够更好地应对多组分信号的干扰。其次,我们引入一种基于局部能量密度的多尺度同步挤压策略,即在不同的“挤压尺度”上迭代地进行瞬时频率估计和能量重排。这种多尺度的挤压过程能够逐步细化时频表示,将能量更精确地聚焦到真实的瞬时频率曲线上。通过多轮的挤压,可以有效地抑制不同组分之间的相互干扰,提高分辨率。
本文的结构安排如下:第二节简要回顾标准SST的原理和局限性。第三节详细介绍本文提出的改进的多同步挤压变换(IMSST)方法,包括瞬时频率估计的改进和多尺度同步挤压策略。第四节通过仿真实验,将IMSST与STFT、CWT和标准SST在处理不同类型的非平稳信号时的性能进行比较。第五节将IMSST应用于实际非平稳信号的分析。第六节总结本文工作并展望未来研究方向。
-
改进的多同步挤压变换(IMSST)
为了克服标准SST在处理复杂非平稳信号时的不足,本文提出了改进的多同步挤压变换(IMSST)。IMSST的主要改进体现在以下两个方面:改进的瞬时频率估计和多尺度同步挤压策略。
3.2 多尺度同步挤压策略
IMSST的核心思想之一是引入多尺度的同步挤压过程。标准SST只进行一次能量挤压,这对于复杂信号可能不足以完全分离和聚焦能量。IMSST则进行多次迭代的挤压过程,每次迭代都在前一次挤压结果的基础上进行。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类