【滤波跟踪】基于无迹卡尔曼滤波器UKF实现飞机的飞行路径滤波附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

现代航空领域的快速发展对飞机飞行路径的精确估计提出了日益严苛的要求。无论是出于导航、控制、安全监控还是数据分析的目的,获取高精度的飞机实时位置和速度信息都至关重要。然而,受传感器噪声、环境干扰、模型不确定性以及非线性动力学等多种因素的影响,直接从传感器原始数据中获取准确的飞行状态信息极具挑战性。滤波技术作为一种有效的状态估计方法,在解决这一问题中发挥着核心作用。其中,卡尔曼滤波器(Kalman Filter, KF)因其对线性系统的最优估计性能而在早期航空领域得到了广泛应用。然而,飞机的飞行路径动力学通常是非线性的,传统的KF在处理非线性系统时性能会显著下降,甚至可能发散。为了应对非线性系统滤波的挑战,扩展卡尔曼滤波器(Extended Kalman Filter, EKF)通过局部线性化逼近非线性函数,在一定程度上扩展了KF的应用范围。然而,EKF的线性化过程引入了截断误差,且其性能高度依赖于线性化点的选取,当非线性程度较高时,EKF的精度和稳定性仍然难以保证。

为了克服EKF的局限性,无迹卡尔曼滤波器(Unscented Kalman Filter, UKF)应运而生。UKF采用确定性采样方法(Unscented Transform, UT)来逼近非线性函数的概率分布,通过精心选择一系列确定性的采样点(称为Sigma点)来代表状态的均值和协方差,并将这些点通过非线性函数传播,再加权合成新的均值和协方差。与EKF相比,UKF避免了线性化过程,无需计算复杂的Jacobian矩阵,且在大多数情况下对非线性系统的估计精度优于EKF。因此,基于UKF实现飞机的飞行路径滤波,为解决飞机非线性飞行路径估计问题提供了一条有效途径。本文将深入探讨基于UKF实现飞机飞行路径滤波的原理、方法及其在实际应用中的优势。

2. 传感器测量模型

为了对飞机状态进行估计,需要利用各种传感器提供的测量数据。常见的机载传感器包括GPS接收机、惯性测量单元(IMU)、雷达、高度计等。不同的传感器提供不同类型的测量信息,例如GPS提供位置信息,IMU提供加速度和角速率信息,雷达可以提供距离和角度信息。测量模型描述了飞机的状态如何通过传感器转化为测量值。假设在 𝑘k 时刻的测量值为 𝑧𝑘zk,则测量方程可以表示为:

3. 无迹卡尔曼滤波器(UKF)原理

UKF的核心思想是使用确定性采样来逼近非线性变换后的概率分布。与EKF不同,UKF不进行局部线性化,而是通过计算一组具有特定权重的采样点(Sigma点)来代表状态的均值和协方差。这些Sigma点经过非线性函数传播后,再加权合成新的均值和协方差。这个过程被称为无迹变换(Unscented Transform, UT)。

UKF的滤波过程与传统的卡尔曼滤波器类似,也分为预测步和更新步。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值