✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文针对电力系统最优潮流计算问题,引入人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)进行求解。通过深入分析人工鱼群算法的原理和特点,结合电力系统最优潮流计算的数学模型,构建基于人工鱼群算法的最优潮流计算方法。详细设计算法的觅食、聚群、追尾等行为策略以及参数设置,并通过具体电力系统算例进行仿真实验。实验结果表明,该方法能够有效求解最优潮流问题,在收敛速度和寻优精度上表现良好,为电力系统优化运行提供了一种新的有效途径,对提高电力系统运行的经济性、安全性和可靠性具有重要意义。
一、引言
1.1 研究背景
最优潮流(Optimal Power Flow,OPF)是电力系统分析与运行中的重要研究内容,旨在在满足系统运行约束条件下,通过调节控制变量,实现诸如发电成本最小、网损最小、电压稳定性最优等目标 。随着电力系统规模的不断扩大、结构日益复杂,以及新能源大规模接入带来的不确定性,传统的最优潮流计算方法,如牛顿 - 拉夫逊法、内点法等,在处理大规模、非线性、多约束的复杂问题时,逐渐暴露出计算效率低、易陷入局部最优等局限性 。因此,寻求高效、可靠的优化算法来求解最优潮流问题,成为电力系统领域的研究热点。
1.2 国内外研究现状
国外在最优潮流计算算法研究方面起步较早,众多智能优化算法被应用于该领域。例如,遗传算法(Genetic Algorithm,GA)通过模拟生物进化过程进行全局搜索,在最优潮流计算中取得了一定应用成果,但存在收敛速度较慢的问题 ;粒子群优化算法(Particle Swarm Optimization,PSO)凭借其结构简单、计算速度快等优点,在处理最优潮流问题时表现出较好性能,但容易陷入局部最优 。国内研究也紧跟国际步伐,一些学者将蚁群算法、模拟退火算法等应用于最优潮流计算 ,通过改进算法策略和参数设置,提高了算法的寻优能力和收敛速度。然而,目前的研究仍在不断探索更高效、更具适应性的算法,以满足电力系统日益增长的优化需求。
1.3 研究目的与意义
本研究旨在将人工鱼群算法应用于电力系统最优潮流计算,充分发挥该算法的全局搜索能力和自适应寻优特性,克服传统算法的局限性,提高最优潮流计算的效率和精度。通过构建基于人工鱼群算法的最优潮流计算模型,为电力系统的优化运行提供更科学、有效的决策依据,从而降低系统运行成本,提升电网的安全性和可靠性,对促进电力系统的可持续发展具有重要的理论和实际意义。
⛳️ 运行结果
🔗 参考文献
[1] 刘耀年,李迎红,张冰冰,等.基于人工鱼群算法的最优潮流计算[J].电工电能新技术, 2006, 25(4):5.DOI:10.3969/j.issn.1003-3076.2006.04.007.
[2] 刘耀年,李迎红,李春亮,等.基于人工鱼群算法的最优潮流计算[C]//中国高等学校电力系统及其自动化专业第二十二届学术年会.0[2025-05-03].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇