【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着能源互联网和智能电网技术的快速发展,微能源网作为分布式能源系统的重要组成部分,因其灵活性和高效性受到广泛关注。微能源网通过集成多种可再生能源、储能设备及负荷管理,实现能源的多源协同和优化调度,是促进能源转型和实现碳中和目标的关键技术。然而,由于微能源网中各类能源资源和负荷的复杂性、动态性及不确定性,传统的能量管理策略(EMS)面临着建模困难和实时响应能力不足的问题。近年来,深度强化学习(Deep Reinforcement Learning,DRL)作为一种强大的数据驱动优化方法,在复杂动态系统的能量管理与优化问题中展现出巨大潜力。本文围绕基于深度强化学习的微能源网能量管理与优化策略进行系统研究,旨在突破传统方法的局限,提高微能源网的运行效率与经济性,同时保障系统的安全与稳定运行。

一、引言
全球气候变化和能源结构转型的背景下,传统单一能源系统逐渐向多能互补的微能源网络转变。微能源网作为革新性能源系统,其关键在于高效的能量管理与优化调度策略,能够合理配置分布式能源资源,动态平衡电力供需,实现节能减排。传统基于数学规划、启发式算法及模型预测控制的方法在小规模或低复杂度系统中表现良好,但随着系统规模的扩大及不确定性的增强,现有方法的实时性和鲁棒性不足,难以应对多时尺度、多目标的复杂优化任务。

深度强化学习结合了强化学习的决策能力和深度神经网络的特征提取能力,能够无需精确模型,通过与环境交互学习最优策略,尤其适合处理微能源网中具有高维状态空间和复杂动作空间的控制问题。近年来,深度强化学习在自动驾驶、机器人控制等领域取得突破,逐步被引入能源管理领域,显示出在微能源网实时能量调度中的应用潜力和优势。

二、微能源网的结构与能量管理特点
微能源网通常由分布式光伏(PV)、风电、微型燃气轮机、储能系统(电池、氢能储存等)、可控负荷以及主电网接口构成。其核心任务是实现多能互补,确保能源供应的稳定性和经济性。微能源网具有以下特点:

  1. 多能源异构融合:不同能源类型的发电特性、成本和可调节性差异较大,导致系统状态复杂多变。

  2. 高度不确定性与波动性:可再生能源受天气影响显著,负荷需求波动频繁,增加了调度难度。

  3. 多目标优化:需要在经济性、环保性和安全性之间权衡,实现多个指标的综合优化。

  4. 分布式与多层次控制:系统各单元分散,具有不同控制权限,需协调统一调度。

针对以上复杂性,传统基于模型的优化算法需实时求解大规模混合整数非线性问题,计算压力大且难以保证收敛性,限制了实际应用。

三、深度强化学习在微能源网能量管理中的应用原理
强化学习通过智能体(Agent)与环境交互,不断试错与学习,以获取最大化累积奖励的决策策略。深度强化学习利用深层神经网络近似价值函数或策略函数,解决了高维状态空间的表示与泛化问题。

具体到微能源网能量管理,环境状态包括当前能源发电量、储能状态、电价信息、负荷需求等;智能体的动作包括分配各能源单元的输出功率、储能充放电调度、负荷响应指令等;奖励函数则依据运行成本、系统稳定性与环境影响进行设计。

典型算法包括DQN(深度Q网络)、DDPG(深度确定性策略梯度)、PPO(近端策略优化)等,能够实现端到端的策略学习,较好地应对系统的动态性与不确定性。

四、基于深度强化学习的微能源网能量管理策略设计

  1. 状态空间设计
    合理构建包含光伏及风电预测值、储能电量、负荷需求、电价信号以及历史动作等多维信息的状态向量,有利于智能体全面感知系统现状,从而做出科学决策。

  2. 动作空间设计
    动作空间可设为连续或离散类型,根据不同微能源网的控制需求,智能体调整各类子系统输出功率及储能充放电速率,灵活应对负荷波动。

  3. 奖励函数设计
    奖励函数综合考虑运行成本(燃料费、维护费、购电成本)、系统运行安全指标(储能容量限额、频率稳定性)及环境指标(碳排放量),通过权重系数调整达到经济与环境的平衡,确保策略具备综合优化能力。

  4. 算法选择与训练
    基于系统的特点选择适合的DRL算法,如对连续动作空间适合应用DDPG和PPO算法。利用历史数据和仿真环境进行大量训练,采用经验回放和目标网络等技术提高训练稳定性和效率。

⛳️ 运行结果

🔗 参考文献

[1]刘俊峰,陈剑龙,王晓生,等.基于深度强化学习的微能源网能量管理与优化策略研究[J].电网技术, 2020.DOI:10.13335/j.1000-3673.pst.2020.0144.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值