✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
莱斯散射和相移在无小区大规模 MIMO 中的作用
- 莱斯散射
:在无线通信环境中,莱斯信道模型常用于描述信号的传播特性。它考虑了视距(LoS)分量和非视距(NLoS)散射分量,适用于存在较强直射路径和散射路径的场景。在无小区大规模 MIMO 系统中,莱斯散射会影响信号的衰落特性,不同的莱斯因子(K 因子)表示 LoS 分量和 NLoS 分量的相对强度,从而对系统的信道容量、误码率等性能指标产生影响。
- 相移
:相移在无小区大规模 MIMO 中主要与信号的相位变化有关。由于无线信道的时变性和多径效应,信号在传播过程中会发生相位偏移。相移会影响信号的相干性和叠加效果,进而影响系统的性能。例如,在进行信号检测和合并时,准确估计和补偿相移对于提高接收信号的质量至关重要。
LS(最小二乘法)信道估计在无小区大规模 MIMO 中的性能
- 原理
:LS 信道估计通过最小化接收信号与已知导频信号之间的误差平方和来估计信道。在无小区大规模 MIMO 系统中,它利用多个天线接收到的导频信号来构建信道估计方程,然后求解得到信道估计值。
- 优点
:计算复杂度较低,实现相对简单。在信噪比较高的情况下,能够提供较好的信道估计性能。
- 缺点
:对噪声敏感,在低信噪比环境下性能下降明显。由于没有考虑信道的先验信息,估计精度有限,尤其是在信道变化较快或存在较多散射的情况下,估计误差较大。
MMSE(最小均方误差)信道估计在无小区大规模 MIMO 中的性能
- 原理
:MMSE 信道估计考虑了信道的统计特性和噪声的先验信息,通过最小化估计误差的均方值来得到最优的信道估计。它利用信道的协方差矩阵和噪声的方差来计算估计的权重,从而使估计结果更接近真实信道。
- 优点
:在各种信噪比条件下,通常都能提供比 LS 更好的估计性能。能够有效利用信道的先验信息,对噪声有较好的抑制作用,在信道变化平缓的情况下,估计精度较高。
- 缺点
:计算复杂度较高,需要知道信道的统计特性,如信道的协方差矩阵。在实际应用中,准确获取信道的统计信息可能比较困难,尤其是在快速变化的信道环境中。
LMMSE(线性最小均方误差)信道估计在无小区大规模 MIMO 中的性能
- 原理
:LMMSE 是 MMSE 的一种简化形式,它假设信道估计是接收信号的线性函数。通过求解线性方程组来得到最优的线性估计器,使得估计误差的均方值最小。
- 优点
:在一定程度上兼顾了性能和复杂度。相比于 MMSE,计算复杂度有所降低,同时仍然能够利用部分信道的先验信息,性能优于 LS。
- 缺点
:性能略逊于 MMSE,尤其是在信道条件复杂或对估计精度要求较高的情况下。对于信道统计信息的准确性仍然有一定依赖,如果统计信息不准确,会影响估计性能。
综上所述,在基于莱斯散射和相移的无小区大规模 MIMO 系统中,不同的信道估计算法各有优缺点。LS 简单但精度有限,MMSE 性能好但复杂度高,LMMSE 则在两者之间进行了一定的折衷。在实际应用中,需要根据具体的系统要求、信道环境和计算资源等因素,选择合适的信道估计算法来优化系统性能
⛳️ 运行结果
🔗 参考文献
[1] 曹拓荒.LTE信道估计及干扰噪声测量[D].华南理工大学,2011.DOI:CNKI:CDMD:2.1011.188763.
[2] 姚琨.LTE系统中的导频设计和信道估计仿真研究[D].西南交通大学,2011.DOI:10.7666/d.y1957531.
[3] 周子钰,景小荣.无小区大规模MIMO系统中基于叠加导频的上行频谱效率理论上限分析[J].信号处理, 2021.DOI:10.16798/j.issn.1003-0530.2021.04.020.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇