✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景与意义
在全球能源转型与 “双碳” 目标的大背景下,智慧楼宇作为城市能源消耗的重要主体,其能源高效管理与优化调度成为实现节能减排、提升能源利用效率的关键环节。传统楼宇能源调度模式往往缺乏对能源需求动态变化的精准把控与灵活响应,导致能源浪费与成本增加。需求侧响应(Demand Side Response,DSR)作为一种有效的能源管理手段,能够通过激励机制引导用户调整用电行为,实现电力供需平衡。而采用多时间尺度调度策略,将日前、日内非滚动、日内滚动调度以及实时修正相结合,能够充分考虑能源供需的不确定性与动态变化,进一步挖掘需求侧响应潜力。因此,研究考虑需求侧响应的智慧楼宇多时间尺度调度策略,对推动楼宇能源绿色低碳发展、提升能源系统稳定性与经济性具有重要意义。
二、多时间尺度调度策略原理
2.1 日前调度
日前调度以一天为时间周期,在电力市场交易日前,综合考虑气象预报、历史用电数据、楼宇设备运行计划等信息,对次日楼宇的电力、热力等能源需求进行预测。结合需求侧响应资源(如可调节负荷、储能设备等)的调节能力,以能源成本最小化、碳排放最低化等为目标,制定初步的能源调度计划,包括各类设备的启停时间、运行功率,以及与外部能源市场的购售电安排等。该计划为后续日内调度提供基础框架,但由于预测存在不确定性,需要日内调度进一步优化调整。
2.2 日内非滚动调度
日内非滚动调度通常以小时或更短时间间隔为周期,在日前调度计划的基础上,根据更新的气象数据、实时电价信息、楼宇实际负荷变化等,对能源调度计划进行局部优化。重点考虑需求侧响应中相对稳定的可调节资源,如提前设定的设备运行模式调整、部分可平移负荷的调度等,确保在不影响楼宇正常运行的前提下,实现能源成本的降低与供需平衡的维持。此阶段调度计划一旦确定,在该时段内不再滚动调整。
2.3 日内滚动调度
日内滚动调度以更短的时间间隔(如 15 分钟或 30 分钟)进行动态更新,实时跟踪楼宇能源需求与供应的变化情况。借助智能传感设备与先进通信技术,获取实时的设备运行状态、用户用电行为等信息,结合电网实时电价波动、可再生能源发电的不确定性等因素,对能源调度计划进行滚动优化。充分挖掘需求侧响应中灵活性较高的资源,如空调系统的实时温度调节、照明系统的亮度控制等,实现能源资源的精细化调度,提高能源利用效率。
2.4 实时修正
实时修正作为多时间尺度调度的最后一道防线,针对突发情况(如电网故障、极端天气导致的负荷骤变等)进行即时响应。通过智能控制系统与自动化设备,快速调整楼宇内能源设备的运行状态,优先保障关键负荷供电,同时最大限度
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 吕帅帅.考虑需求侧响应的楼宇综合能源系统多时间尺度调度策略[D].长春工程学院,2022.
[2] 包宇庆,王蓓蓓,李扬,等.考虑大规模风电接入并计及多时间尺度需求响应资源协调优化的滚动调度模型[J].中国电机工程学报, 2016, 36(17):11.DOI:10.13334/j.0258-8013.pcsee.151343.
[3] 金力,房鑫炎,蔡振华,等.考虑特性分布的储能电站接入的电网多时间尺度源储荷协调调度策略[J].电网技术, 2020, 44(10):8.DOI:10.13335/j.1000-3673.pst.2020.0330.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类