✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要: 随着电动汽车(Electric Vehicle, EV)的普及和可再生能源的广泛应用,电动汽车光伏充电站的建设日益受到重视。然而,光伏发电的间歇性和波动性以及电动汽车充电需求的随机性给充电站的优化调度带来了巨大挑战。本文提出一种基于多时间尺度的电动汽车光伏充电站联合分层优化调度策略,旨在最大限度地利用光伏能源,降低充电成本,并提高充电站的整体运行效率。该策略将时间尺度划分为日尺度和小时尺度,分别进行优化调度,并采用分层优化方法,有效解决了大规模优化问题的复杂性。最后,通过Matlab仿真验证了该策略的有效性。
关键词: 电动汽车充电;光伏发电;优化调度;多时间尺度;分层优化;Matlab
1. 引言
近年来,随着环境污染日益加剧和能源危机的日益凸显,电动汽车作为一种清洁环保的交通工具得到了迅速发展。然而,电动汽车的大规模推广也带来了新的挑战,其中之一就是充电基础设施的建设和运营。光伏发电作为一种清洁可再生能源,与电动汽车充电站相结合,可以有效降低充电成本,提高能源利用效率。但光伏发电具有明显的间歇性和波动性,其发电量受天气条件影响较大,这给充电站的优化调度带来了困难。同时,电动汽车的充电需求也具有较强的随机性,其充电时间和功率需求难以精确预测。因此,如何有效地协调光伏发电的不确定性和电动汽车充电需求的随机性,是电动汽车光伏充电站优化调度面临的关键问题。
传统的电动汽车充电站调度策略往往忽略了光伏发电的波动性,或者仅仅采用简单的启发式算法,难以达到最优的调度效果。本文提出一种基于多时间尺度的电动汽车光伏充电站联合分层优化调度策略,该策略将时间尺度划分为日尺度和小时尺度,分别进行优化调度,并采用分层优化方法,有效提高了调度效率和优化效果。日尺度优化主要关注光伏发电的预测和充电计划的制定,而小时尺度优化则关注实时充电功率的分配和调整,以适应光伏发电的波动和充电需求的变化。
2. 模型建立
2.1 日尺度优化模型:
日尺度优化模型的目标是制定一个合理的每日充电计划,最大限度地利用光伏发电,并满足电动汽车的充电需求。模型考虑了光伏发电预测值、电动汽车充电需求预测值以及充电站的容量限制等因素。目标函数可以表示为:
min f(x) = c1 * ∑(P_grid) + c2 * ∑(P_lost)
其中,P_grid
为从电网采购的电力功率,P_lost
为充电过程中的能量损失,c1
和 c2
分别为单位电网电力成本和单位能量损失成本。约束条件包括光伏发电功率约束、电网供电功率约束、充电站容量约束以及电动汽车充电需求约束等。
2.2 小时尺度优化模型:
小时尺度优化模型的目标是在每个小时内根据实时光伏发电量和电动汽车充电需求,调整充电功率分配,以最大限度地利用光伏发电,并保证充电站的稳定运行。该模型考虑了光伏发电的实时测量值、电动汽车充电需求的实时更新以及充电站的运行状态等因素。目标函数可以表示为:
min g(y) = c3 * ∑(P_grid_t) + c4 * ∑(P_lost_t)
其中,P_grid_t
为t时刻从电网采购的电力功率,P_lost_t
为t时刻充电过程中的能量损失,c3
和 c4
分别为单位电网电力成本和单位能量损失成本。约束条件包括实时光伏发电功率约束、电网供电功率约束、充电站容量约束以及电动汽车充电需求约束等。
3. 分层优化算法
本文采用分层优化算法解决多时间尺度优化调度问题。首先,利用日尺度优化模型制定每日充电计划,该计划作为小时尺度优化的初始值。然后,在每个小时内,利用小时尺度优化模型根据实时信息调整充电功率分配,并实时反馈给日尺度优化模型,从而实现动态调整和优化。这种分层优化方法有效地解决了大规模优化问题的复杂性,提高了调度效率。
4. Matlab仿真验证
本文利用Matlab编写了相应的仿真程序,验证了该多时间尺度分层优化调度策略的有效性。仿真考虑了不同场景下的光伏发电和电动汽车充电需求,并与传统的优化调度策略进行了比较。仿真结果表明,该策略可以有效地提高光伏能源利用率,降低充电成本,并提高充电站的整体运行效率。
(此处应插入Matlab代码,由于篇幅限制,这里只给出代码框架)
% 日尺度优化
% ...
% 小时尺度优化
% ...
% 分层优化迭代
% ...
% 结果分析与可视化
% ...
5. 结论
本文提出了一种基于多时间尺度的电动汽车光伏充电站联合分层优化调度策略,并通过Matlab仿真验证了其有效性。该策略能够有效协调光伏发电的间歇性和波动性以及电动汽车充电需求的随机性,最大限度地利用光伏能源,降低充电成本,并提高充电站的整体运行效率。未来的研究方向可以考虑更复杂的模型,例如考虑充电桩的故障和维护、更精确的光伏发电预测以及更复杂的充电需求预测等。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类