【优化调度】基于多时间尺度的电动汽车光伏充电站联合分层优化调度附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

摘要: 随着电动汽车(Electric Vehicle, EV)的普及和可再生能源的广泛应用,电动汽车光伏充电站的建设日益受到重视。然而,光伏发电的间歇性和波动性以及电动汽车充电需求的随机性给充电站的优化调度带来了巨大挑战。本文提出一种基于多时间尺度的电动汽车光伏充电站联合分层优化调度策略,旨在最大限度地利用光伏能源,降低充电成本,并提高充电站的整体运行效率。该策略将时间尺度划分为日尺度和小时尺度,分别进行优化调度,并采用分层优化方法,有效解决了大规模优化问题的复杂性。最后,通过Matlab仿真验证了该策略的有效性。

关键词: 电动汽车充电;光伏发电;优化调度;多时间尺度;分层优化;Matlab

1. 引言

近年来,随着环境污染日益加剧和能源危机的日益凸显,电动汽车作为一种清洁环保的交通工具得到了迅速发展。然而,电动汽车的大规模推广也带来了新的挑战,其中之一就是充电基础设施的建设和运营。光伏发电作为一种清洁可再生能源,与电动汽车充电站相结合,可以有效降低充电成本,提高能源利用效率。但光伏发电具有明显的间歇性和波动性,其发电量受天气条件影响较大,这给充电站的优化调度带来了困难。同时,电动汽车的充电需求也具有较强的随机性,其充电时间和功率需求难以精确预测。因此,如何有效地协调光伏发电的不确定性和电动汽车充电需求的随机性,是电动汽车光伏充电站优化调度面临的关键问题。

传统的电动汽车充电站调度策略往往忽略了光伏发电的波动性,或者仅仅采用简单的启发式算法,难以达到最优的调度效果。本文提出一种基于多时间尺度的电动汽车光伏充电站联合分层优化调度策略,该策略将时间尺度划分为日尺度和小时尺度,分别进行优化调度,并采用分层优化方法,有效提高了调度效率和优化效果。日尺度优化主要关注光伏发电的预测和充电计划的制定,而小时尺度优化则关注实时充电功率的分配和调整,以适应光伏发电的波动和充电需求的变化。

2. 模型建立

2.1 日尺度优化模型:

日尺度优化模型的目标是制定一个合理的每日充电计划,最大限度地利用光伏发电,并满足电动汽车的充电需求。模型考虑了光伏发电预测值、电动汽车充电需求预测值以及充电站的容量限制等因素。目标函数可以表示为:

 

min f(x) = c1 * ∑(P_grid) + c2 * ∑(P_lost)

其中,P_grid 为从电网采购的电力功率,P_lost 为充电过程中的能量损失,c1 和 c2 分别为单位电网电力成本和单位能量损失成本。约束条件包括光伏发电功率约束、电网供电功率约束、充电站容量约束以及电动汽车充电需求约束等。

2.2 小时尺度优化模型:

小时尺度优化模型的目标是在每个小时内根据实时光伏发电量和电动汽车充电需求,调整充电功率分配,以最大限度地利用光伏发电,并保证充电站的稳定运行。该模型考虑了光伏发电的实时测量值、电动汽车充电需求的实时更新以及充电站的运行状态等因素。目标函数可以表示为:

 

min g(y) = c3 * ∑(P_grid_t) + c4 * ∑(P_lost_t)

其中,P_grid_t 为t时刻从电网采购的电力功率,P_lost_t 为t时刻充电过程中的能量损失,c3 和 c4 分别为单位电网电力成本和单位能量损失成本。约束条件包括实时光伏发电功率约束、电网供电功率约束、充电站容量约束以及电动汽车充电需求约束等。

3. 分层优化算法

本文采用分层优化算法解决多时间尺度优化调度问题。首先,利用日尺度优化模型制定每日充电计划,该计划作为小时尺度优化的初始值。然后,在每个小时内,利用小时尺度优化模型根据实时信息调整充电功率分配,并实时反馈给日尺度优化模型,从而实现动态调整和优化。这种分层优化方法有效地解决了大规模优化问题的复杂性,提高了调度效率。

4. Matlab仿真验证

本文利用Matlab编写了相应的仿真程序,验证了该多时间尺度分层优化调度策略的有效性。仿真考虑了不同场景下的光伏发电和电动汽车充电需求,并与传统的优化调度策略进行了比较。仿真结果表明,该策略可以有效地提高光伏能源利用率,降低充电成本,并提高充电站的整体运行效率。

(此处应插入Matlab代码,由于篇幅限制,这里只给出代码框架)

 

% 日尺度优化
% ...

% 小时尺度优化
% ...

% 分层优化迭代
% ...

% 结果分析与可视化
% ...

5. 结论

本文提出了一种基于多时间尺度的电动汽车光伏充电站联合分层优化调度策略,并通过Matlab仿真验证了其有效性。该策略能够有效协调光伏发电的间歇性和波动性以及电动汽车充电需求的随机性,最大限度地利用光伏能源,降低充电成本,并提高充电站的整体运行效率。未来的研究方向可以考虑更复杂的模型,例如考虑充电桩的故障和维护、更精确的光伏发电预测以及更复杂的充电需求预测等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值