【SCI电气】考虑不同充电需求的电动汽车有序充电调度方法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源危机和环境污染日益严重,电动汽车(Electric Vehicles, EVs)作为一种清洁、高效的交通工具,正逐渐受到广泛关注。然而,大规模电动汽车接入电网也给电网的运行和管理带来了新的挑战。电动汽车的无序充电行为可能导致电网峰谷差增大、电压波动加剧、配电网阻塞等问题,进而威胁电网的安全稳定运行。因此,如何有效地调度电动汽车的充电行为,实现电动汽车与电网的协调发展,已成为电力系统研究的重要课题。本文将探讨考虑不同充电需求的电动汽车有序充电调度方法,旨在通过合理的调度策略,充分利用电网的空闲容量,降低充电成本,提高电网运行效率,促进电动汽车的普及和应用。

1. 引言:电动汽车充电的挑战与机遇

电动汽车的普及对电力系统既是挑战也是机遇。一方面,电动汽车作为一种新型的负荷,其充电行为具有随机性、不确定性和时空分布不均等特点,这给电网的规划、运行和控制带来了新的复杂性。尤其是在高峰时段,大量的电动汽车集中充电,可能导致配电网过载,电压下降,甚至引发安全事故。另一方面,电动汽车也可以作为一种分布式储能资源,通过智能化的充电调度策略,参与电网的调峰填谷,提高电网的运行效率和稳定性。此外,电动汽车还可以接入可再生能源发电系统,实现清洁能源的消纳,推动能源结构的转型升级。

因此,电动汽车的有序充电调度至关重要。有效的调度策略能够平衡电网的供需关系,降低充电成本,并为用户提供个性化的充电服务。有序充电调度方法不仅能够缓解电网的压力,还能提高电网的经济性和可靠性,实现电动汽车与电网的双赢。

2. 不同充电需求的分析

电动汽车用户具有不同的充电需求,这些需求受到多种因素的影响,包括但不限于:

  • 出行需求:

     用户的出行习惯、行驶里程和行程安排直接影响充电需求。例如,经常长途行驶的用户需要更多的电量储备,对充电速度的要求更高。而短途代步的用户则可以接受较低的充电功率。

  • 充电时间:

     用户可用于充电的时间窗口也是影响充电策略的重要因素。一些用户只有在夜间才能充电,而另一些用户则可以在工作时段进行充电。

  • 充电成本:

     用户对充电成本的敏感度不同。一些用户更倾向于在电价较低的时段充电,以节省充电费用。而另一些用户则更注重充电的便利性,对电价不太敏感。

  • 车辆类型:

     不同类型的电动汽车,如纯电动汽车、插电式混合动力汽车等,其电池容量和充电功率也存在差异,从而影响充电需求。

  • 个人偏好:

     一些用户可能对电池的充电状态有特殊的要求,例如始终保持较高的电量储备,或者避免深度放电等。

考虑到这些不同的充电需求,需要设计灵活且个性化的充电调度策略,以满足不同用户的需求,同时保障电网的稳定运行。

3. 有序充电调度方法的研究现状

目前,针对电动汽车有序充电调度方法的研究已经取得了一系列进展。这些方法可以大致分为以下几类:

  • 集中式调度方法:

     集中式调度方法通常由一个中央控制器负责收集所有电动汽车的充电需求信息,并根据电网的运行状态和电价信息,统一制定充电计划。这种方法能够实现全局优化,提高电网的运行效率,但需要大量的通信基础设施和计算资源,且对数据的安全性要求较高。常见的集中式调度算法包括线性规划、非线性规划、混合整数规划等。

  • 分布式调度方法:

     分布式调度方法是指每个电动汽车用户或充电站根据自身的利益和电网的局部信息,自主地制定充电策略。这种方法具有较好的可扩展性和鲁棒性,对通信基础设施的要求较低,但难以实现全局优化,可能导致局部拥堵。常见的分布式调度算法包括博弈论、多智能体系统等。

  • 分层式调度方法:

     分层式调度方法结合了集中式和分布式方法的优点,将充电调度问题分解为多个层次。例如,可以由中央控制器负责制定全局的电网运行策略,然后由各个区域或充电站根据全局策略,制定局部的充电计划。这种方法能够在一定程度上平衡全局优化和局部自主性。

此外,近年来人工智能技术,如机器学习和深度学习,也被应用于电动汽车有序充电调度中。这些技术能够根据历史数据和实时信息,预测电动汽车的充电需求和电网的运行状态,从而制定更加智能化的充电策略。

4. 考虑不同充电需求的有序充电调度策略

为了满足不同电动汽车用户的充电需求,并保障电网的稳定运行,本文提出一种考虑不同充电需求的有序充电调度策略,该策略主要包含以下几个步骤:

  • 充电需求预测:

     首先,需要预测每个电动汽车用户的充电需求。可以通过分析用户的历史出行数据、充电习惯和车辆信息等,建立充电需求预测模型。例如,可以使用时间序列分析、回归分析或机器学习等方法,预测用户未来的充电需求。

  • 充电优先级排序:

     根据用户的充电需求和电网的运行状态,对电动汽车进行充电优先级排序。例如,可以将出行需求紧急、充电时间窗口较短、或电池电量较低的电动汽车赋予较高的充电优先级。

  • 充电计划制定:

     基于充电优先级和电网的可用容量,制定充电计划。可以采用优化算法,如线性规划、非线性规划或遗传算法等,在满足用户的充电需求的前提下,尽量降低充电成本和减小电网的负荷波动。

  • 实时调整:

     由于电动汽车的充电需求具有不确定性,需要根据实际情况对充电计划进行实时调整。例如,当电网出现异常情况或用户的充电需求发生变化时,需要重新分配充电资源,以确保电网的安全稳定运行。

为了更好地满足不同用户的需求,该策略还应考虑以下几点:

  • 个性化充电服务:

     为用户提供个性化的充电服务,例如允许用户自主选择充电时间和充电功率,或者提供不同类型的充电套餐,以满足不同用户的偏好。

  • 激励机制:

     制定合理的激励机制,引导用户参与有序充电,例如提供电价优惠或充电积分等。

  • 信息透明度:

     向用户提供实时的电网运行状态和电价信息,让用户能够更好地了解充电调度策略,并参与其中。

5. 仿真分析与结果讨论

为了验证该调度策略的有效性,可以使用仿真软件,如MATLAB或Python,建立电动汽车充电仿真模型,模拟不同场景下的电动汽车充电行为,并评估该调度策略对电网的影响。

仿真结果可以从以下几个方面进行分析:

  • 电网负荷曲线:

     观察采用有序充电调度策略后,电网负荷曲线的变化情况,评估该策略对电网的调峰填谷效果。

  • 电压稳定性:

     分析采用有序充电调度策略后,电网的电压稳定性,评估该策略对电网电压波动的影响。

  • 充电成本:

     计算采用有序充电调度策略后,用户的充电成本,评估该策略对用户的经济效益。

  • 用户满意度:

     评估采用有序充电调度策略后,用户的充电满意度,了解用户对该策略的接受程度。

通过对比分析不同场景下的仿真结果,可以验证该调度策略的有效性,并找出改进的方向。

6. 结论与展望

本文探讨了考虑不同充电需求的电动汽车有序充电调度方法,旨在通过合理的调度策略,充分利用电网的空闲容量,降低充电成本,提高电网运行效率,促进电动汽车的普及和应用。提出的调度策略能够根据用户的充电需求和电网的运行状态,制定个性化的充电计划,并进行实时调整,以满足不同用户的需求,同时保障电网的稳定运行。

未来的研究方向可以包括:

  • 考虑更复杂的充电场景:

     例如,考虑V2G(Vehicle-to-Grid)技术,将电动汽车作为一种移动储能资源,参与电网的调峰调频。

  • 结合可再生能源发电:

     将电动汽车充电与可再生能源发电相结合,实现清洁能源的消纳。

  • 引入区块链技术:

     利用区块链技术的去中心化和安全性,构建安全可靠的电动汽车充电平台。

  • 探索基于人工智能的智能充电调度方法:

     利用机器学习和深度学习等人工智能技术,进一步提高充电调度的智能化水平。

电动汽车的有序充电调度是一个复杂而重要的课题,需要不断地探索和创新,才能实现电动汽车与电网的和谐发展,为构建清洁、高效、可持续的能源未来做出贡献。

⛳️ 运行结果

🔗 参考文献

[1] 温银堂,贺唆华,王洪斌,等.基于模糊自适应PID算法的改进三段式蓄电池快速充电系统[J].清华大学学报:自然科学版, 2014(7):7.DOI:JournalArticle/5b434feac095d716a4c5148c.

[2] 谷峪.电动汽车用永磁同步电机控制系统研究与设计[D].武汉理工大学,2007.DOI:10.7666/d.y1120534.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值