本文创新点\贡献
分割驱动,让每个可以看到的部分都对关键点位置的预测做出贡献
方法
方法概述
假设:
物体是刚体且CAD模型已知。
对输入的图片做卷积,然后产生分割和预测,将图片分成 S × S S \times S S×S个网格,每个网格都i预测属于的类别并回归关键点的位置,关键点在这里就是交点,然后根据2D-3D对应来做EPnP
分割流
对每个 S × S S \times S S×S的cell预测label, D s e g = K + 1 D_{seg} = K +1 Dseg=K+1, K K K是类别数,因为前景和背景的不平衡,所以使用的 Focal Loss
回归流
预测内容:
在分割出来的mask中进行的预测,预测提前定义好的3D关键点的2D映射,这里用的是八个角点,所以 N = 8 N=8 N=8, D r e g = 3 N D_{reg} = 3N Dreg=3N
预测方法:
没有直接预测位置,预测的是八个角点对于中心位置的偏移,所以设2D形心是 c c c,对于第 i i i个关键点,预测的偏移为 h i ( c ) h_i(c) hi(c),所以绝对位置就是 c + h i ( c ) c+h_i(c) c+