Segmentation-driven 6D Object Pose Estimation论文理解

本文介绍了一种分割驱动的6D对象姿态估计方法,通过分割和回归流预测物体关键点,利用EPnP解决多同类物体的挑战。采用Darknet-53网络,以Focal Loss和置信度损失进行训练,并通过聚类优化多物体情况。实验结果显示了该方法的有效性和与其他方法的对比。
摘要由CSDN通过智能技术生成

本文创新点\贡献

分割驱动,让每个可以看到的部分都对关键点位置的预测做出贡献


方法

在这里插入图片描述

方法概述

假设
物体是刚体且CAD模型已知。

对输入的图片做卷积,然后产生分割和预测,将图片分成 S × S S \times S S×S个网格,每个网格都i预测属于的类别并回归关键点的位置,关键点在这里就是交点,然后根据2D-3D对应来做EPnP


分割流

在这里插入图片描述
对每个 S × S S \times S S×S的cell预测label, D s e g = K + 1 D_{seg} = K +1 Dseg=K+1 K K K是类别数,因为前景和背景的不平衡,所以使用的 Focal Loss


回归流

在这里插入图片描述
预测内容
在分割出来的mask中进行的预测,预测提前定义好的3D关键点的2D映射,这里用的是八个角点,所以 N = 8 N=8 N=8 D r e g = 3 N D_{reg} = 3N Dreg=3N

预测方法
没有直接预测位置,预测的是八个角点对于中心位置的偏移,所以设2D形心是 c c c,对于第 i i i个关键点,预测的偏移为 h i ( c ) h_i(c) hi(c),所以绝对位置就是 c + h i ( c ) c+h_i(c) c+

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值