YOLOv5 实现无人机识别

本文介绍了如何利用YOLOv5框架训练无人机识别模型。通过自建数据集,包括无人机、鸟和直升机的图片,经过100个epochs的训练,实现了较好的识别效果。训练过程涉及数据准备、配置参数、模型训练以及测试验证。
摘要由CSDN通过智能技术生成

YOLOv5发布至今,已经迭代多个版本,是唯一基于pytorch框架的YOLO系列的模型框。简单易用,特别适合自定义目标检测与对象检测。只要用了Pytorch版本YOLOv5框架,可以毫不夸张的说两个小时就可以学会目标检测。

01

第一步数据准备

想用视觉识别一下空中飞行的无人机,识别对象有:

1:鸟类bird2:无人机UAV3:直升机helicopter

想通过自己创建一个数据集,训练yolov5,在调用detect.py来识别一下效果。

,时长00:11

百度了一下,发现无法获取别人已经标注好的数据集。(这里提醒大家,自己做数据集不费时间,给100多张图打标签label就行,用不了半个小时)图片就从百度搜索就行,我们的目的是感性的认识这套牛掰的算法,100张图训练个几个小时就可以出来很好的效果,还有不用非要显卡,虽然我的电脑有显卡,但是装pytorch的显卡cuda版本的总是出错,索性不弄了,直接用cpu版本,cpu版本的pytorch包还小ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值