利用光流做双目立体匹配的2种去除外点的方法

本文探讨了在双目立体匹配中,利用光流跟踪快速匹配特征点后,如何通过两种方法去除错误跟踪的外点:1) 使用RANSAC算法估计基础矩阵;2) 基于相机相对变换构建对极约束并设定阈值。这两种方法都能有效地提高匹配精度。
摘要由CSDN通过智能技术生成

利用光流跟踪可以对左右图像的特征点进行快速匹配,相比于利用描述子(Descriptor)进行匹配,使用光流跟踪速度更快,然而,使用光流法进行跟踪会返回一些错误跟踪的点,如下图中圈红圈的部分。

最近看了一些开源代码,发现了2种用于去除外点的方法。

1.基于RANSAC算法估计左右图像的基础矩阵
该方法可以用cv::findFundamentalMat实现,且十分高效。

可以看到第一幅图中红圈内的误跟踪现象不见了。

2.基于已知的左右相机相对变换 R , t \textbf R, \textbf t R,t构建对极约束
首先将特征点的像素坐标转化为归一化坐标,假设一双对应的特征点的归一化坐标为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值