利用光流跟踪可以对左右图像的特征点进行快速匹配,相比于利用描述子(Descriptor)进行匹配,使用光流跟踪速度更快,然而,使用光流法进行跟踪会返回一些错误跟踪的点,如下图中圈红圈的部分。
最近看了一些开源代码,发现了2种用于去除外点的方法。
1.基于RANSAC算法估计左右图像的基础矩阵
该方法可以用cv::findFundamentalMat实现,且十分高效。
可以看到第一幅图中红圈内的误跟踪现象不见了。
2.基于已知的左右相机相对变换 R , t \textbf R, \textbf t R,t构建对极约束
首先将特征点的像素坐标转化为归一化坐标,假设一双对应的特征点的归一化坐标为