导体 → \rightarrow →线圈 → \rightarrow →线圈组 → \rightarrow →相/线电动势
1、导体感应电动势大小
基波:
E
a
1
=
2.22
f
Φ
1
E_{a1}=2.22f\Phi_1
Ea1=2.22fΦ1
ν
\nu
ν次基波:
E
a
ν
=
2.22
f
ν
Φ
ν
E_{a\nu}=2.22f\nu\Phi_\nu
Eaν=2.22fνΦν
2、线圈电动势大小(节距因数)
整距线圈:线圈的两导体边距离为极距 τ \tau τ ,两电动势反相;无论基波、谐波,整距线圈电动势有效值都是一根导体电动势的两倍。整距线圈电动势是整距线匝电动势的 N c N_c Nc倍,波形不变。
基波:
E
c
1
=
4.44
f
N
c
Φ
1
E_{c1}=4.44fN_c\Phi_1
Ec1=4.44fNcΦ1
ν
\nu
ν次基波:
E
c
ν
=
4.44
ν
f
N
c
Φ
ν
E_{c\nu}=4.44{\nu}fN_c\Phi_\nu
Ecν=4.44νfNcΦν
短距线圈:线圈的两导体边间节距
y
y
y小于极距
τ
\tau
τ,两电动势相差电角度为
γ
=
y
τ
×
18
0
。
\gamma=\frac{y}{\tau}\times180^。
γ=τy×180。(小于
18
0
。
180^。
180。),线圈电动势与导体电动势并不是两倍关系(小于2倍),因此乘一节距因数:
k
y
ν
=
s
i
n
(
ν
y
τ
9
0
。
)
k_{y\nu}=sin(\nu\frac{y}{\tau}90^。)
kyν=sin(ντy90。)
如上图,两线匝电动势相差的角度为两线匝之间的节距 y y y对应的电角度: γ = y τ × 18 0 。 \gamma=\frac{y}{\tau}\times180^。 γ=τy×180。再对两相量矢量加法运算可得结果(只计算大小): E T 1 = 2 E a 1 s i n ( ν y τ 9 0 。 ) = 4.44 f k y 1 Φ 1 E_{T1}=2E_{a1}sin(\nu\frac{y}{\tau}90^。)=4.44fk_{y1}\Phi_1 ET1=2Ea1sin(ντy90。)=4.44fky1Φ1
基波:
E
c
1
=
4.44
f
k
y
1
N
c
Φ
1
E_{c1}=4.44fk_{y1}N_c\Phi_1
Ec1=4.44fky1NcΦ1
ν
\nu
ν次基波:
E
c
ν
=
4.44
ν
f
N
c
k
y
ν
Φ
ν
E_{c\nu}=4.44{\nu}fN_ck_{y\nu}\Phi_\nu
Ecν=4.44νfNckyνΦν
短距对谐波电动势的影响:
短距后基波电动势减小的不多,谐波电动势有较大的削弱;
要消除某一次谐波只需要使该次谐波节距因数等于0即可。
只要使线圈节距缩短 ν \nu ν次谐波磁场的一个极距 τ ν \frac{\tau}{\nu} ντ,即 y = τ − τ ν = ν − 1 ν τ y=\tau-\frac{\tau}{\nu}=\frac{\nu-1}{\nu}\tau y=τ−ντ=νν−1τ就可达到
为了同时削弱5次、7次谐波,通常使 ν = 6 \nu=6 ν=6 。
3、线圈组电动势大小(分布因数)
线圈组:q个线圈串联组成一个线圈组,线圈组电动势等于q个串联线圈电动势的相量和。相邻相量相差相位为一个槽间角
α
\alpha
α
分布因数:要将q个线圈合成的电动势等效为这q个线圈集中在同一槽中时合成的电动势,因此会乘一个恒小于1的比值(分布因数) :
k
q
ν
=
s
i
n
(
ν
q
α
1
2
)
q
s
i
n
(
ν
α
1
2
)
k_{q\nu}=\frac{sin(\frac{{\nu}q\alpha_1}{2})}{q sin(\frac{{\nu}\alpha_1}{2})}
kqν=qsin(2να1)sin(2νqα1),同时,槽数要修正为等效的
q
N
c
qN_c
qNc。
由几何关系可知:
E q 1 = 2 R s i n q α 1 2 E_{q1}=2Rsin\frac{q\alpha_1}{2} Eq1=2Rsin2qα1(每两个相邻线圈之间相差的电角度为一个槽对应的电角度 α 1 \alpha_1 α1,一个线圈组由 q q q个线圈组成)
> R = E c 1 2 s i n α 1 2 >R=\frac{E_{c1}}{2sin\frac{\alpha_1}{2}} >R=2sin2α1Ec1(由每个小三角形的几何关系得)
将 R R R带入到 E q 1 E_{q1} Eq1的表达式中:
E q 1 = q E c 1 s i n q α 1 2 q s i n α 1 2 = q E c 1 k q 1 E_{q1}=qE_{c1}\frac{sin\frac{q\alpha_1}{2}}{qsin\frac{\alpha_1}{2}}=qE_{c1}k_{q1} Eq1=qEc1qsin2α1sin2qα1=qEc1kq1
基波:
E
q
1
=
4.44
f
q
N
c
k
y
1
k
q
1
Φ
1
E_{q1}=4.44fqN_ck_{y1}k_{q1}\Phi_1
Eq1=4.44fqNcky1kq1Φ1
ν
\nu
ν次基波:
E
q
ν
=
4.44
ν
f
q
N
c
k
y
ν
k
q
ν
Φ
ν
E_{q\nu}=4.44{\nu}fqN_ck_{y\nu}k_{q\nu}\Phi_\nu
Eqν=4.44νfqNckyνkqνΦν
分布绕组对谐波电动势的影响:
采用分布绕组也能削弱电动势中的高次谐波;
原因:线圈分布后其电动势的值为相量和,其值要减小,基波削弱较少,而谐波削弱较多。
4、交流绕组的相电动势和线电动势
4.1、交流绕组的相电动势
相电动势:绕组的相电动势实际上等于一条支路的线圈组数乘以一个线圈组的电动势
每相有多少个线圈组?与绕组形式有关
单层绕组:每相有 p p p个线圈组,每条支路有 p / a p/a p/a个线圈组
双层绕组:每相有 2 p 2p 2p个线圈组,每条支路有 2 p / a 2p/a 2p/a个线圈组
定义:绕组因数
k
N
=
k
y
×
k
q
k_N=k_y{\times}k_q
kN=ky×kq
定义:串联匝数
N
=
{
p
q
N
c
a
单层绕组
2
p
q
N
c
a
双层绕组
N=\begin{cases} \frac{pqN_c}{a} &\text{单层绕组 } \\ \frac{2pqN_c}{a} &\text{双层绕组} \end{cases}
N={apqNca2pqNc单层绕组 双层绕组
那么可得相电动势公式如下:
E
φ
1
=
{
p
a
E
q
1
=
4.44
f
p
q
N
c
a
k
N
1
Φ
1
单层绕组
2
p
a
E
q
1
=
4.44
f
2
p
q
N
c
a
k
N
1
Φ
1
双层绕组
E_{\varphi1}=\begin{cases} \frac{p}{a}E_{q1}=4.44f\frac{pqN_c}{a}k_{N1}\Phi_1 &\text{单层绕组 } \\ \frac{2p}{a}E_{q1}=4.44f\frac{2pqN_c}{a}k_{N1}\Phi_1 &\text{双层绕组} \end{cases}
Eφ1={apEq1=4.44fapqNckN1Φ1a2pEq1=4.44fa2pqNckN1Φ1单层绕组 双层绕组
带入串联匝数化简可得:
基波:
E
φ
1
=
4.44
f
N
k
N
1
Φ
1
E_{\varphi1}=4.44fNk_{N1}\Phi_1
Eφ1=4.44fNkN1Φ1
ν
\nu
ν次基波:
E
φ
ν
=
4.44
ν
f
N
k
N
ν
Φ
ν
E_{\varphi\nu}=4.44{\nu}fNk_{N\nu}\Phi_\nu
Eφν=4.44νfNkNνΦν
总相电动势谐波有效值:
E
φ
=
E
φ
1
2
+
E
φ
3
2
+
E
φ
5
2
+
.
.
.
+
E
φ
1
ν
E_\varphi=\sqrt{E_{\varphi1}^2+E_{\varphi3}^2+E_{\varphi5}^2+...+E_{\varphi1}^\nu}
Eφ=Eφ12+Eφ32+Eφ52+...+Eφ1ν
高次谐波对相电动势大小影响不大,对波形影响大。
4.1、交流绕组的线电动势
线电动势:与绕组链接方式有关(Y or △)
绕组为Y接:
相电动势中3及3的倍数次谐波分量都为同相位,因此在线电动势中抵消,不存在3及3的倍数次谐波分量。
E
l
=
3
E
φ
1
2
+
E
φ
5
2
+
E
φ
7
2
+
.
.
.
E_l=\sqrt{3}\sqrt{E_{\varphi1}^2+E_{\varphi5}^2+E_{\varphi7}^2+...}
El=3Eφ12+Eφ52+Eφ72+...
绕组为△接:
相电动势中3及3的倍数次谐波分量在闭合△绕组中产生环流,该环流在3次和3的倍数的激磁谐波阻抗上的压降与其电动势相平衡,线电动势中将不存在3及3的倍数次谐波。
E
l
=
E
φ
1
2
+
E
φ
5
2
+
E
φ
7
2
+
.
.
.
E_l=\sqrt{E_{\varphi1}^2+E_{\varphi5}^2+E_{\varphi7}^2+...}
El=Eφ12+Eφ52+Eφ72+...
5、特殊问题:电动势齿谐波问题及削弱方法
齿谐波:
定义:所有由于齿槽影响而产生的谐波电动势统称为齿谐波电动势。
齿谐波电动势可以看成是由
2
m
q
+
1
2mq+1
2mq+1及
2
m
q
−
1
2mq-1
2mq−1两种不同频率的等幅正线电动势的合成。
为什么不采用分布、短距削弱齿谐波:齿谐波的分布因数与节距因数与基波相等,若采取分布与短距削弱齿谐波,则会连同基波一起被削弱。
齿谐波削弱方法:
采用磁性槽楔或半闭口槽
采用斜槽
增大每极每相槽数
q
q
q。