基于电话会议的LLMs股票预测框架

这篇论文介绍了一个名为ECC Analyzer的新框架,它利用大型语言模型(LLMs)从电话会议(ECCs)中提取更丰富、更细粒度的信息,以提高股票波动性预测的性能。研究者们采用了一种分层信息提取策略,包括段落级总结和关键句子提取,然后通过多模态特征融合进行波动性预测。实验结果表明,该模型在预测短期波动性方面优于传统基准,同时在中长期预测方面也显示出与现有最佳方法相当的性能。

1. 引言 (Introduction)

在金融分析领域,预测一定时期内的股票波动性对于资本市场参与者做出更好的投资决策至关重要。以往的研究虽然已经展示了利用公开信息预测股票波动性的可能性,但这些方法往往依赖于结构化数据,对于非结构化数据,如电话会议(ECCs)的利用尚未充分。

本研究提出了一个名为ECC Analyzer的新框架,它通过使用大型语言模型(LLMs)来深入分析ECCs中的文本和音频内容,以提取更丰富、更具预测性的特征。这种分层信息提取策略首先通过总结文本段落来提取一般信息,然后利用检索增强生成(RAG)技术提取包含关键信息的细粒度焦点句子,这些特征随后通过多模态特征融合用于波动性预测。

实验结果表明,ECC Analyzer在预测股票短期波动性方面显著优于传统分析基准,实现了平均均方误差(MSE)的显著降低。这一发现证实了在金融分析中应用高级LLM技术的有效性,尤其是在预测市场动态和情绪方面。

2. 相关工作 (Related Work)

  • 股票波动性预测:股票波动性预测是金融研究中的一个重要领域,其对于投资者理解市场风险和制定投资策略具有关键作用。传统方法主要依赖于历史股票价格数据,通过时间序列模型如ARCH和GARCH来预测未来的波动性。这些模型虽然在短期内有效,但对市场情绪和突发事件的反应不够灵敏。随着计算语言学的发展,研究者开始探索使用非结构化数据,例如公司的年报、季报以及社交媒体上的文本信息,来捕捉市场情绪和预期,从而提高波动性预测的准确性。特别是,公司发布的收益报告和收益电话会议记录,因其包含公司管理层对财务状况和未来展望的直接表述,成为预测股票波动性的重要信息源。

  • 大型语言模型在金融领域的应用:大型语言模型(LLMs)在金融领域的应用日益广泛。LLMs能够处理和理解大量的文本数据,从而在金融文档摘要、自动化问答系统以及市场情绪分析等方面发挥重要作用。例如,LLMs可以用于从公司的10-K和10-Q报告中提取关键的财务信息,或者通过分析社交媒体上的讨论来预测市场趋势。此外,LLMs还能够通过理解复杂的金融文本,提供更加精准的交易建议。尽管LLMs在金融文本处理方面展现出巨大潜力,但如何将这些模型应用于股票波动性预测,尤其是在处理收益电话会议等多模态数据时,仍是一个相对未被充分研究的领域。这表明,结合LLMs的高级文本分析能力和多模态数据的深度挖掘,可能会为股票市场预测带来新的突破。

3. 问题定义 (Problem Formulation)

本文采用回报价格的自然对数标准差作为衡量标准,并以此为基础构建了预测模型,旨在通过分析收益电话会议的文本和音频数据来预测未来的股票波动性,同时确立了使用均方误差(MSE)作为模型性能评估的指标,为实现对股票市场波动性的准确预测提供了明确的数学框架和评估标准。

4. 我们提出的框架 (Our Proposed Framework)

ECC Analyzer框架的构建分为四个主要部分:

音频编码:首先,使用Wav2vec2等预训练音频模型处理ECCs的原始音频数据,将音频帧转换为向量表示。接着,通过多头自注意力(MHSA)机制对这些向量进行处理,以提取音频特征。MHSA包括多头注意力模块、归一化模块和两层前馈网络,这些模块共同作用于音频向量,最终通过平均池化层输出一个凝练的音频特征向量。

文本编码:文本编码过程采用SimCSE模型,该模型通过对比学习将文本句子映射到向量空间中,使得语义相近的句子在向量空间中更接近。文本记录被分割成句子,并使用SimCSE模型生成句子级别的向量表示。然后,通过MHSA机制进一步提炼文本特征,最终通过平均池化得到文本特征向量。

细粒度信息提取:这一部分进一步细化了文本分析过程。首先,将ECCs文本分割成多个部分,使用大型语言模型(LLM)对每个部分进行总结,以提取关键信息。接着,利用与财务专家合作设计的“问题库”,通过检索增强生成(RAG)技术,针对每个问题检索和提取包含关键信息的文本片段。这些片段经过LLM处理,生成对问题的回答,即被认为是包含关键信息的重要句子。

多模态融合和模型训练:在提取了音频、文本和LLM分析得到的特征后,通过加性融合策略将这些特征整合成统一的特征集。具体来说,将音频特征、文本特征以及LLM提取的特征通过加权求和的方式合并,形成一个新的特征向量。这个融合后的特征向量随后输入到两个全连接层中,进行回归任务的训练,以最小化预测波动性与实际波动性之间的均方误差。

5. 实验 (Experiment)

数据集:研究使用了公开的S&P 500 ECC数据集,该数据集包含了500家在S&P 500上市的公司在2017年的收益电话会议的音频记录和对应的文本记录。数据集被划分为训练集和测试集,比例为8:2,以确保训练集的数据在时间上早于测试集的数据,从而保证预测的有效性。

基线设置:为了评估ECC Analyzer的性能,研究者将其与多种现有的预测方法进行了比较,包括传统的GARCH模型、基于LSTM的模型、注意力机制增强的LSTM模型(MT-LSTM-ATT)、使用层次化注意力网络的HAN模型、多模态深度回归模型(MRDM)、基于BERT的HTML模型,以及使用对抗训练的AMA-LSTM模型。此外,还考虑了直接使用大型语言模型(如GPT-4-turbo-2024-04-09)进行预测的基线。

实验细节:在实验中,所有的LLM交互都是使用“GPT-4 Turbo-2024-04-09”进行的,温度参数设置为0以确保模型输出的可预测性。ECC Analyzer框架的训练使用了PyTorch框架,每个多头自注意力层包含6个层和8个头。通过网格搜索确定了最佳的参数,选择了Adam优化器的学习率。

结果分析:实验结果显示,ECC Analyzer在预测股票短期波动性(3天和7天)方面表现突出,均方误差(MSE)显著低于其他基线方法。在预测中期(15天)和长期(30天)波动性方面,ECC Analyzer的性能与现有最佳方法相当。此外,研究还进行了消融研究,分析了ECC分析结果的不同组合对模型性能的影响,发现结合音频和文本特征的LLM提取特征显著提高了短期预测的准确性。当加入对特定焦点的分析时,性能进一步提升,表明模型有效地识别和利用了预测股票走势最相关的信息。

6. 结论 (Conclusion)

本文总结了ECC Analyzer框架的主要贡献和研究成果,指出该框架通过利用大型语言模型对收益电话会议的深入分析,显著提高了股票波动性预测的准确性,特别是在短期预测方面,并强调了模型中各个组件在预测过程中的重要性,同时提出了未来研究的方向,以进一步提升预测模型的性能和应用范围。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值