大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是今天觉得比较有意思的论文:
1、揭秘LLM思考力:如何让语言模型学会像人类一样"深思熟虑"
2、LLM也有"直觉"和"深思"?揭秘仿生双系统思维的人工智能
3、MEGA-Bench:500+真实任务全方位检验LLM"眼力",谁是最强"全能选手"?
1、揭秘LLM思考力:如何让语言模型学会像人类一样"深思熟虑"
你是否曾想象过,人工智能也能像人类一样,在回答问题前先"深思熟虑"?论文展示了一个令人兴奋的突破:让大语言模型(LLMs)学会"思考",而不仅仅是简单地回应指令。
研究团队提出了一种创新的训练方法——思维偏好优化(TPO)。这种方法不需要额外的人类数据,而是通过迭代搜索和优化过程,探索可能的思维生成空间。有趣的是,模型通过评估自己的回应来学习如何思考,而无需直接的监督。这就像是让AI在没有人类指导的情况下,自主培养critical thinking的能力。
令人惊喜的是,这种"会思考"的AI不仅在传统的推理和问题解决任务中表现出色,还在市场营销、健康和常识等非推理类别中展现出优势。这打破了我们对AI思考能力应用范围的固有认知,为AI在更广泛领域的应用开辟了新天地。
实验结果显示,经过多轮TPO训练后,"会思考"的AI模型在AlpacaEval和Arena-Hard这两个衡量通用指令跟随能力的基准测试中,分别取得了52.5%和37.3%的优胜率,大幅超越了传统的直接响应模型。这一突破性进展让我们不禁期待:未来的AI助手是否能在回答我们的问题时,展现出更接近人类专家的思考深度和灵活性?
论文标题:Thinking LLMs: General Instruction Following with Thought Generation
论文链接:https://arxiv.org/abs/2410.10630
2、LLM也有"直觉"和"深思"?揭秘仿生双系统思维的人工智能
你是否曾想象过,人工智能也能像人类一样,既有快速的直觉反应,又能进行深度思考?论文揭示了一个令人兴奋的LLM架构:仿生双系统思维模型。
这项突破性研究借鉴了诺贝尔奖得主丹尼尔·卡尼曼提出的人类思维双系统理论,巧妙地将LLM分为"谈话者"(Talker)和"思考者"(Reasoner)两个角色。"谈话者"就像我们的直觉系统,能快速、自然地与用户交流;而"思考者"则像我们的理性系统,负责深度推理、规划和形成信念。
这种创新架构不仅提高了LLM的效率,还让其表现更接近人类。想象一下,当你与AI助手聊天时,它能立即做出反应,同时在"背后"进行更复杂的思考。更妙的是,"谈话者"可以在等待"思考者"得出结论时,继续与你互动,就像人类边聊天边思考一样自然。
研究团队以睡眠教练AI为例,展示了这一架构的实际应用。结果令人振奋:AI不仅能进行流畅的对话,还能制定复杂的睡眠改善计划。这一突破让我们不禁期待:未来的AI助手是否将更像一个真正的人类专家,既能与我们畅聊,又能为我们深思熟虑?
论文标题:Agents Thinking Fast and Slow: A Talker-Reasoner Architecture
论文链接:https://arxiv.org/abs/2410.08328
3、MEGA-Bench:500+真实任务全方位检验LLM"眼力",谁是最强"全能选手"?
LLM的"眼力"到底有多强?最新研究MEGA-Bench给出了一个全面的答案。这项突破性研究不再局限于特定领域,而是构建了一个包含500多个真实场景任务的评估体系,涵盖了从网页导航到体育分析等多样化应用,堪称AI视觉能力的"终极考试"。
与以往的评估方法不同,MEGA-Bench不仅考察AI的选择题能力,还要求AI生成数字、短语、代码、甚至JSON等多种输出格式。这种设计更贴近现实应用,真正检验AI的全方位能力。研究团队还开发了40多种评估指标,确保对AI表现的精准衡量。
评估结果令人惊叹:在旗舰模型中,GPT-4以显著优势领先;开源模型中,Qwen2-VL表现出色,几乎可与顶级闭源模型媲美;在高效模型中,Gemini 1.5 Flash展现出全面的实力。有趣的是,研究发现链式思考(CoT)提示对专有模型效果显著,但对多数开源模型反而适得其反。
MEGA-Bench不仅是一次全面评估,更为AI研究者指明了方向。它揭示了不同模型在各类任务中的优劣,为模型优化和应用开发提供了宝贵参考。随着AI不断进化,谁将成为下一个"全能视觉AI"?让我们拭目以待!
论文标题:MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks
论文链接:https://arxiv.org/abs/2410.10563
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。