Auto-RAG开源,复杂多跳问题就这么解决了~

Auto-RAG是一个以 LLM 强大的决策能力为核心的自主迭代检索模型,通过多轮对话的方式建立 LLM 与检索者之间的交互模型,通过迭代推理确定何时检索信息、检索什么内容,在获得足够的外部知识后停止迭代,并将答案提供给用户。

一个具体的例子展示了Auto-RAG如何处理复杂的多跳问题。Auto-RAG进行迭代推理,策略性地规划检索,提取相关知识,精确识别信息需求,并为下一次检索细化查询,最终收敛到最终答案。在这个例子中,Auto-RAG在与检索器交互五次后终止,成功得出正确答案。

Auto-RAG GUI 交互:提供可部署的用户交互界面,输入问题后,Auto-RAG 会自动与检索器进行交互,无需人工干预。用户可以选择是否显示 Auto-RAG 与检索器交互的详细信息。

Auto-RAG模型的技术细节,包括数据构建、训练过程和推理方法:

1 基于推理的迭代检索

  • 迭代检索过程被概念化为LLM和检索器之间的多轮交互。

  • Auto-RAG通过细致的推理来确定是否需要额外的检索以及需要寻找的具体信息。

  • 一旦获取到足够的信息,Auto-RAG停止生成新查询并给出最终答案。

1.1 基于推理的规划和查询细化

  • 为了提高效率和保持迭代过程中的连贯性,提出了包含三种不同类型推理的迭代检索:检索规划、信息提取和答案推断。

  • 使用少量示例提示(few-shot prompting)来引导LLM进行这样的推理过程。

  • 根据用户输入和之前的检索计划,LLM可以迭代地细化查询。

1.2 数据过滤和格式化

  • 对生成的推理和查询进行过滤,以确保质量。

  • 如果最终答案与数据集中提供的答案一致,则保留数据。

  • 将迭代检索过程概念化为多轮交互对话,并对数据进行格式化

2 训练

  • 采用标准的监督式微调策略,以使任意LLM具备在迭代检索中自主决策的能力。

  • 计算每个实例的交叉熵损失,并进行优化。

3 推理

  • 训练完成后,Auto-RAG能够自主地在迭代检索中做出基于推理的决策。

  • 在每次迭代中,根据用户查询或检索到的文档提供输入,并提取Auto-RAG指定的后续步骤。

  • 如果在与检索器交互T次后仍未终止,Auto-RAG会使用生成的查询来自动生成文档,并将其作为下一次迭代的输入。

  • 如果在额外的T_PK次迭代后仍未终止,Auto-RAG会直接预测答案。

实验结果表明,Auto-RAG 在六个基准测试中的表现优于所有基线FLARE、Self-RAG、Iter-RetGen、Standard RAG、IRCoT等

案例研究:Self-RAG与Auto-RAG。Self-RAG只进行一次检索。相比之下,Auto-RAG能够适应性地调整检索次数,从而获得更好的性能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值