MoT:高效的多模态Transformers

本文介绍Meta 最近提出的用于提速多模态 Transformer 的框架 Mixture of Transformers (MoT)。MoT 是一种稀疏多模态 Transformers,可以在文本和图像处理中仅使用一半的计算资源达到与传统模型相当的性能。

MoT 框图如下图所示:

MoT 旨在处理任意交错模态(如文本、图像和语音)序列。每种模态都使用单独的一组非 Embedding 的 Transformers 参数(包括 FFN、Attn 和 LayNorm)。在训练过程中,每种类型的模态使用特定的模态损失函数进行优化。

Motivation

LLMs 的发展已经扩展到能够在统一框架内处理多种数据类型的多模态大型语言模型(MM-LLMs)。最近研究表明可以通过 Early-fusion 和 Mixed-modal 在统一架构内处理多模态数据。虽然这种模型具有很大的研究和应用潜力,但由于同时需要跨多个模态进行学习,使得它对数据和计算资源的需求显著增加。

训练 Eary-fusion 的多模态 LLMs 需要比单模态模型更大的数据量和计算资源。每种模态都引入了相应的优化挑战,这些挑战又要求在统一模型中同时解决。经验上,这些模态在 Dense Transformer 模型训练中相互冲突,使优化变得复杂,并增加了计算负载。

此外,为了探究多模态基础模型的内部表示,作者对它们的特征空间进行可视化分析,如下图所示:

传统多模态模型将文本和图像的 Token(如单词和图像片段)的混合序列作为一个单一流进行处理。采用自回归方法,预测序列中的下一个 Token(单词或图像片段)。

随着层数的增加,模型自然地开始将不同模态的 Token(文本和图像)在特征空间中分组成单独的 Cluster。这表明随着层数的增加,模型区分数据类型的能力不断增强。虽然模型将所有数据统一处理,但它依然会在内部区不同模态的数据,这表明增加模态特定组件可以进一步增强这种模型内对模态的区分并提高效率。

受此启发,作者提出了 Mixture-of-Transformers(MoT)的稀疏多模态 Transformer 架构。通过根据模态解耦参数,MoT 降低了计算要求,并减轻了 Dense 架构中出现的训练冲突。

Mixture of Transformers (MoT)

Modality-Specific Parameter Decoupling

MoT 为所有非 Embedding 的 模型参数(包括 FFN、Attn 矩阵和 LayerNorm)引入特定于模态的权重,从而扩展标准 Transformer 架构。它使模型能够更有效地处理不同模态,同时保持学习跨模态交互的能力。

设 为 Token 的输入序列,其中每个 属于一种模态。典型的 Transformer 可以表示为:

在 MoT 中,根据模态来解耦参数,但保留了全局自注意力机制:

虽然 MoT 对参数根据不同模态进行了解耦,但由于全局自注意力机制跨越所有模态运行,它能捕捉跨模态关系:

其中,、和是特定于模态的投影矩阵,和是特定于模态的层归一化。

MoT算法如下所示:

Experiments

作者进行了大量实验,在不同多模态设置下从头开始预训练十三个实例(包括三个7B模型)来评估 MoT 的有效性。实验主要结论如下:

  • 7B 的 MoT模型在仅使用 55.8% 的FLOPs的情况下,达到了与一个 7B Dense 基准模型相当的效果:

  • 将模态扩展至三种(文本、图像和语音)时,MoT 仅使用了37.2%的训练FLOPs,在所有模态上达到了与 Dense 基准模型相当的性能

  • 在Transfusion设置中,7B 的 MoT 模型仅使用1/3的FLOPs,实现了与Dense 基准模型相当的性能

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值