OCR多模态大模型:视觉模型与LLM的结合之路

在使用多模态大模型(Visual Language Model, VLM)做视觉信息抽取时,常常出现错字的问题。为了解决这一问题,本文提出了一种名为Guidance OCR的方法。该方法在不额外训练模型的情况下,先利用OCR算法获取图片中的文字内容,再利用OCR识别出的文字对VLM的生成过程进行约束,从而一定程度上减少VLM做视觉信息抽取任务时出现错字的情况。

图1:一张医疗发票,其中的敏感信息已被抹去

使用Qwen2-VL-2B模型抽取图1中的信息时,模型原生回答和使用GuidanceOCR后的回答见下表

项目链接:

https://github.com/hzauzxb/guidance-ocr

一、项目背景

视觉信息抽取任务是给定一张单证图片,并从图片中抽取对应的关键字段,如从图1所示的医疗发票中抽取金额合计,住院时间和医保类型。传统的信息抽取模型先利用OCR算法获取图中的文字位置和文字内容,再利用规则引擎或模板匹配获取关键字段。VLM则可以将图片先输入给模型,再用提问题的方式要求模型给出需要抽取的字段。在开放场景的信息抽取中,由于单证板式太多,规则引擎难以维系,因此常常使用基于VLM的方案

在这里插入图片描述

图2:传统信息抽取流程和多模态大模型(VLM)做视觉信息抽取任务的流程图(以抽取合计金额,医保类型为例)

在实际使用时,为了避免显存OOM,VLM常常会将输入的图像大小限制在一定范围。因此VLM在视觉信息抽取任务中,可能会由于文字太小,模糊不清而给出错误的答案。OCR模型分为检测和识别两部分,检测模型负责给出图中的文字位置,而识别模型会根据检测模型给出的文字位置,将图片中的文字一一裁剪下来,并缩放到指定大小,再去识别文字内容。因此传统OCR模型的识字能力通常是高于多模态大模型的识字能力的。

图3:OCR模型的PipeLine

可以看到,同样是"票据代码",输入多模态大模型的分辨率是 16 * 48,而输入传统OCR识别模型的分辨率则为 48 * 320。该特性导致在视觉信息抽取任务中,若使用VLM抽取图中较小的字段,会出现错字的问题,而传统OCR模型则基本都能识别出正确的文字

为了解决该问题,本文提出了名为Guidance OCR的算法,该算法在不额外训练模型的情况下,先利用OCR算法获取图片中的文字内容,再利用OCR识别出的文字对VLM的生成过程进行约束,从而一定程度上减少VLM做视觉信息抽取任务时出现错字的情况

二、算法流程

本节将先介绍GuidanceOCR的任务设定,再介绍单个字段信息抽取的算法流程(一次调用VLM只抽取图片中的一个关键字段),最后在介绍多个字段信息抽取的算法流程(一次调用VLM会抽取图片中的多个关键字段,并以Json格式返回结果)。

GuidanceOCR的任务设定

图4:Guidance OCR的输入输出,以及视觉信息抽取任务中常见的三种Case

如图4左侧所示,Guidance OCR会将OCR识别出的文字,需要抽取的字段和对应的图片作为输入,并利用多模态大模型(VLM)获取信息抽取结果。Guidance OCR为测试时增强算法(Test Time Argument, TTA), 其并不要求对VLM进行额外的训练。

如图4右侧所示,视觉信息抽取任务有三种常见的情况即:

  • 1.需抽取的字段为单个文本框,即为图4左侧OCR Text列表中的某个字符串

  • 2.需抽取的字段横跨多个文本框,即为图4左侧OCR Text列表中的多个字符串,按特定顺序组合而成

  • 3.需抽取的字段为文本框中的某一部分,即为图4左侧OCR Text列表中的某个字符串的子串

单个字段的信息抽取

在单个字段信息抽取的场景下,多模态大模型的Prompt和Response的要求如下

图5:Guidance OCR的算法流程,其本质为基于OCR的Token判别器

图5给出了Guidance OCR的算法流程:在VLM每次生成Token的时候,先将候选的token按logit从大到小进行排序(图5 左侧);再使用基于OCR的token判别器逐个判断候选Token是否合法(图五 中间);找到的第一个合法Token即为VLM该次生成的Token(图5 右侧);在进行下一次生成候选token前,Guidance OCR还会根据此次生成的Token更新基于OCR的Token判别器(图5 虚线部分)。

图6:基于OCR的Token判断器,其结构为OCR识别出的字符串组成的字典树

图6给出了基于OCR的Token判别器中的数据结构。在该字典树中,每个被OCR识别出的字符串的开头节点和结尾节点都特殊标识了出来。在介绍如何根据该字典树判断Token是否合法前,我们需要先定义字典树上连续的一条边

字典树上连续的一条边

  • 字典树中从上到下连续的字,如:湖南省,小区,南省长沙市;

  • 若灰色节点后接橙色节点,则仍然连续,如:开福区幸福小区、湖南省幸福小区、襄樊湖南省。

被token判别器判定为合法的候选token必须满足

  • 若为大模型首次生成的候选token,对应的文字必须是字典树上连续的一条边或生成结束标识符;

  • 若不是大模型首次生成的候选token,大模型之前生成的文字 + 候选token对应的文字,是字典树上连续的一条边或生成结束标识符。

额外的top_k参数:为了节省时间并提高准确率,Guidance OCR会设置top_k参数,在使用图5所示的算法筛选token时,仅筛选logits为前top_k大的token。若前top_k token中无合法token,则直接输出生成结束标识符,结束生成过程。在实际使用中,通常将top_k设定在50到100之间的数值。

小结:在单个字段的信息抽取的场景下,GuidanceOCR会将OCR识别出的文字内容组合成一个字典树并保证大模型的输出内容为字典树上连续的一条边。在这里我们扩展了连续性的定义,这是为了兼容信息抽取时,需抽取的字段横跨多个文本框的情况。

多个字段的信息抽取

在多个字段信息抽取的场景下,多模态大模型的Prompt和Response的要求如下

与上节的方法类似,多个字段的信息抽取仍然是使用图5所示的Token判别器实现的。与上节不同的是,token判别器有json,key和value三个状态

在这里插入图片描述

当生成时,token判别器为json状态,随着生成的进行,token判别器会基于启发式的规则,进行状态转移,从而保证能生成json格式的结果。与2.2节一致,若输出生成结束标识符或top_k内没找到符合条件的候选token时,生成过程结束。

三、模型效果

在信息抽取数据集上,使用Qwen2VL-2B进行测试;输入图像进行等比例缩放,并将最长边固定为1024;使用Guidance OCR的多个字段信息抽取模式;使用transformers中AutoModel.from_pretrained()部署模型,进行infer

四、讨论

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,用户想了解如何对金融风险诱因进行多模态数据融合的方法。首先,我需要明确多模态数据在金融风险分析中的具体应用场景,以及现有的技术方法有哪些。根据引用[4]中的内容,多模态大模型有不同的架构,比如双编码器、融合架构、编码器-解码器和适配型LLM架构,这些可能适用于不同的数据处理需求。 接下来,我需要考虑金融风险诱因可能涉及的数据类型。金融数据通常是结构化的,比如财务报表、交易记录,但也有非结构化的,比如新闻文本、社交媒体情绪、图像或视频形式的财经报道等。多模态数据融合需要整合这些不同类型的数据源,提取关键特征,并进行联合分析。 根据引用[1]中提到的多维度研究,构建预测模型时需要考虑多源数据的整合。这可能涉及到数据预处理、特征提取、模态对齐和融合策略。例如,使用双编码器架构处理结构化数据和非结构化数据的独立编码,然后通过融合层进行特征交互。或者采用适配型LLM架构,直接将不同模态的数据输入到大语言模型中进行端到端处理。 另外,引用[3]提到模型在可信度和安全性方面的差异,这可能对金融风险分析尤为重要。例如,在处理敏感金融数据时,模型需要具备识别潜在风险和安全威胁的能力,避免生成误导性结论。因此,在选择融合方法时,模型的可靠性和安全性也是需要考虑的因素。 还需要考虑具体的融合技术,如早期融合(数据层面)、中期融合(特征层面)和晚期融合(决策层面)。例如,早期融合可能将不同数据源在输入阶段结合,而中期融合则是在特征提取后进行结合,晚期融合则是在模型输出结果后整合。不同方法各有优劣,需要根据具体应用场景选择。 此外,金融风险诱因的动态性和复杂性可能需要时序分析和因果推理。引用[2]中提到的多模态模型在因果推理能力上的评估结果,可以指导选择适合处理时序数据和因果关系的模型架构。例如,编码器-解码器架构可能适合生成预测结果,而融合架构可能更适合复杂的特征交互。 最后,实际应用中可能面临的挑战包括数据异构性、模型可解释性、计算效率等。需要结合具体案例,如市场风险、信用风险或操作风险,来设计相应的多模态融合方案。同时,参考现有研究和应用案例,如引用[1]中的多维度预测模型构建,可以为金融领域的应用提供方法论支持。 总结起来,回答需要涵盖多模态数据的特点、融合方法的技术细节(如架构选择、融合策略)、模型的可信度和安全性,以及实际应用中的挑战和解决方案。结合用户提供的引用内容,特别是引用[4]中的多模态架构分析,来构建结构清晰的回答,并生成相关问题以进一步引导用户深入探讨。</think>### 金融风险诱因的多模态数据分析融合方法 #### 1. **多模态数据类型特征提取** 金融风险诱因的多模态数据通常包括: - **结构化数据**:财务报表、交易记录、宏观经济指标等,可通过传统统计模型或时间序列分析处理。 - **非结构化文本**:新闻舆情、政策文件、社交媒体评论,需使用自然语言处理技术(如BERT、GPT)提取语义特征[^2]。 - **图像/视频数据**:企业宣传图、生产线监控视频,可通过卷积神经网络(CNN)或视觉Transformer提取视觉特征。 - **时序数据**:市场波动序列、用户行为日志,需结合LSTM或Transformer进行时序建模。 #### 2. **多模态融合架构选择** 根据引用[4]中的架构分类,可选择的融合策略包括: - **双编码器架构**: 适用场景:需要快速处理独立模态的特征(如同时分析财报数据新闻文本)。 示例:用独立编码器分别处理文本和数值数据,通过对比学习实现模态对齐。 $$L_{contrastive} = -\log \frac{e^{s(I,T)/\tau}}{\sum_{k=1}^K e^{s(I,T_k)/\tau}}$$ - **融合架构**: 适用场景:需要深度交互的复杂任务(如关联舆情分析股价异常波动)。 示例:在特征空间中通过交叉注意力机制实现跨模态交互: $$\text{CrossAttention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$ - **适配型LLM架构**: 适用场景:需要利用大语言模型泛化能力(如生成风险预警报告)。 示例:将结构化数据转换为自然语言描述后输入LLM(如GPT-4),实现端到端推理[^3]。 #### 3. **关键技术实施步骤** 1. **数据预处理对齐** - 对非结构化文本进行实体识别(如公司名、风险事件) - 对图像数据使用OCR提取文字信息 - 通过时间戳对齐多源时序数据 2. **可信度增强机制** 针对引用[3]中提到的模型缺陷,需加入: - **风险语义过滤器**:识别文本中的诱导性描述(如“绝对稳赚”) - **多模态交叉验证**:比较数值分析文本结论的一致性 - **可解释性模块**:使用LIME或SHAP展示特征贡献度 3. **动态风险评估模型** 结合引用[1]中的多阶段预测思想,构建: $$RiskScore(t) = \alpha \cdot F_{num}(X_t) + \beta \cdot F_{text}(Y_t) + \gamma \cdot F_{graph}(Z_t)$$ 其中$X_t$为实时交易数据,$Y_t$为舆情数据,$Z_t$为供应链关系图谱。 #### 4. **典型应用场景** - **市场风险预警**:融合新闻情感分析(NLP)、K线图模式识别(CV)、波动率计算(数值分析) - **信用风险评估**:结合企业年报文本(语义分析)、财务比率(结构化数据)、法人关联图谱(图神经网络) - **操作风险识别**:整合系统日志(时序分析)、员工沟通记录(文本挖掘)、监控视频(行为识别) #### 5. **挑战解决方案** | 挑战 | 解决方案 | |------|----------| | 模态异构性 | 使用统一嵌入空间映射(如对比学习) | | 数据时效性 | 构建流式计算框架(如Apache Flink) | | 模型可解释性 | 集成梯度加权类激活映射(Grad-CAM) |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值